

Project Number: 766186

Project Acronym: ECOLE

Project title: Experienced-based Computation: Learning to Optimise

Deliverable D3.5

Integrated software environment and manual

Authors:

 Stephen Friess, Gan Ruan, Leandro L. Minku, Xin Yao – University of

Birmingham

Giuseppe Serra, Zhao Xu– NEC Laboratories Europe

Project Coordinator: Professor Xin Yao, University of Birmingham

Beneficiaries: Universiteit Leiden, Honda Research Institute Europe, NEC

Laboratories Europe

H2020 MSCA-ITN

Date of the report: 30.09.2021

Ref. Ares(2021)5961462 - 30/09/2021

Contents

Executive summary .. 3

Major Achievements .. 3

1 Introduction .. 6

2 Methodology .. 7

2.1 Methodology to Harness Procedural Optimization Data 7

2.1.1 Conversion to Structured Data Formats .. 8

2.1.2 Feature Extraction and Analysis ..11

2.1.3 Application for the Prediction of Operator Configurations.................14

2.2 Evolutionary Optimization for Proactive and Dynamic Computing

Resource Allocation in Open Radio Access Network (O-RAN)16

2.2.1 Proposed Formulation of the Computing Resource Allocation Problem

 16

2.2.2 Overview of the Proposed Evolutionary Algorithm for the Resource

Allocation Problem ..17

2.2.3 Description of Each Step of the Algorithm ...19

2.3 Representation Learning with User-Generated Data22

2.3.1 Improving Node Embedding Interpretability22

2.3.2 Generating Textual Explanations for Node Embeddings24

2.3.3 Evaluation of the Generated Textual Explanations26

3 Manual of the Developed Software ...30

3.1 Obtaining Structured Data Formats and Extracting Features from

Procedural Optimization Data ...30

3.2 Evolutionary Optimization for Proactive and Dynamic Computing

Resource Allocation in Open Radio Access Network ...32

3.3 Interpreting Node Embedding with Text-labeled Graphs37

4 Summary & Outlook ..40

5 References ..41

Executive summary

This deliverable presents the integrated software environments related to the research invested and

the scientific contributions made regarding the work package WP3 of the ECOLE project about

Big Data Analytics and Optimization using Novel Machine Learning Approaches. The report aims

to collect and explain the functionalities, implementation and deployment details of the software

developed in WP3. This includes, but is not limited to, programming languages, platforms and

packages used to implement the software, hardware requirements, example data sets used to verify

the performance, and any other particular settings to compile and run the software. To introduce

the functions in depth, we also explain the major technical advantages and methodology. The

example industrial applications in automotive and telecommunication verticals, and performance

evaluation with benchmark datasets are reported as well to give potential users a complete picture

of the software. All the software packages and example datasets have been published and uploaded

to the public repository of the ECOLE project.

Major Achievements

The table below summarizes the major achievements regarding WP3.5. We explore some

challenging research questions about learning to optimize, and emerging industrial problems

related to the area. Novel solutions and insightful visions are contributed, together with published

software packages.

Research Questions Discussion

Computational models, such as

reinforcement and meta-learning that can

serve as basis for experience-based

algorithms, require the definition of states

and ways to represent meta-knowledge of

different problem domains and

environments. What are possible ways in

the literature to do so for optimization

algorithms?

To acquire state representations one can

identify available literature in algorithm

behavior studies. Promising existing

approaches characterize exploration and

exploitation behavior of optimization

algorithms and obtain low-dimensional

representations of search spaces based upon

which different search behaviors can be

characterized.

What are the weaknesses of existing

approaches based upon low-dimensional

representations of search spaces to

characterize different search behavior in the

literature and how can they be improved?

Existing approaches are problematic as they

fail to properly separate the search behavior

for a fixed algorithm over different

optimization problems. Further, they rely

upon two dimensional representations using

self-organized maps. Significant

improvements can be achieved considering

additionally a channel to aggregate fitness

values and using graph structures which

more accurately model the neighborhood

relationships of different search space

regions.

What are possible application scenarios of

interests for structured state representations

in meta-heuristic and population-based

optimization scenarios?

Within the literature the algorithm selection

problem has been framed as meta-learning.

Further, within our work we gave an

example of how this problem being

alternatively framed as an algorithm

configuration problem. We provided an

illustrative application of car shape

optimization.

After considering the weaknesses of the

existing problem formulation, how to

appropriately formulate the computing

resource allocation problem in Open Radio

Access Network (O-RAN)?

The proposed problem formulation is

designed with the attempt to make the total

traffic data in each cluster close to the

computing resource capacity at each hour of

a day, so that an optimal solution would not

lead to delays in certain periods of the day

while other periods may have resources

over-provisioning. In addition, it equally

considers the effect of the delay and

computing resource utilization rate on the

fitness value of solutions.

As an optimization algorithm with

capability of global search, evolutionary

algorithm is expected to provide better

solutions to the emerging problem in

network industry. How to tailor an

evolutionary algorithm to solve the new

optimization problem?

The proposed evolutionary algorithm mainly

includes initialization, mutation operator

and random cluster splitting. Initialization

aims to randomly generate an initialized

population with feasible solutions on the

problem representation. Mutation operator is

designed to produce feasible offspring

solutions. Random cluster splitting aims to

randomly select a cluster from a solution in

the optimized population of the previous day

and randomly split it into two clusters, so as

to produce an initial population for the

problem of the next day.

Whether the proposed evolutionary method

achieves better solutions than a baseline

algorithm?

Empirical studies have been carried out on

real-world and synthetic datasets and have

demonstrated the significant superiority of

the proposed evolutionary algorithm over

the recent baseline method.

What are the weaknesses of existing

approaches for representation learning in

terms of interpretability?

Most of existing embedding techniques

learn representation vectors in the latent

space, but neither the single numbers nor

their dimensions have an interpretable

meaning. Consequently, the main limitation

of these techniques laid in the fact that they

can only capture relations among items by

using vectors that are black box for end

users. In contrast, our approach is able to

encode the textual information within the

estimated quantities, providing vectors that

are self-explainable.

Does integration of additional textual

information improve interpretability of

representation learning?

Our findings indicate that learning human-

understandable vector representations from

textual data improves the explainability of

the analyzed items, strengthening trust in AI

systems. Additionally, as previously

mentioned, we are able to directly encode

the textual information within the learned

vector representations. In fact, each

dimension of the vector corresponds to a

word in the vocabulary and each value

represents the probability that the

corresponding word would explain the

entity.

What are potential ways of utilizing the

developed software packages for

interpreting node embedding to application

scenarios?

The presented approach can elicit user

opinion on product characteristics from user

generated data (texts and behavior).

Therefore, the developed software packages

can be integrated with different learning

tasks and domains, as long as some textual

information is available.

1 Introduction

In the Experience-based Computation: Learning to Optimize (ECOLE) project, we aim to address

several industrial optimization challenges, including Optimization using Natural Computation,

Multi-objective Optimization and System Engineering and Big Data Analytics. The project has

been further divided into several subprojects, where each Early Stage Researcher (ESR) is

responsible for each subproject. The research targets of ECOLE include shortening the product

design cycle, optimization of the resource consumption for services and products, and facilitating

creation of more balanced and innovative products towards user preference. Instead of just

developing technologies to solve a given problem, it takes a bold step forward and proposes to use

knowledge automatically across different problem domains. Referring to knowledge, skill, and

practice derived from problem solving processes in time, the goal is to automatically learn and

transfer the experience of optimizing one product or process for solving other optimization

problems.

The deliverable D3.5 Integrated Software Environment and Manual presents the developed

software tools in terms of representation learning, deep probabilistic models with user generated

data and modules for proactive dynamic optimization within the scope of the work package WP3

Big Data Analytics and Optimization using Novel Machine Learning Approaches. The

achievements reported in the deliverable are mainly based on the research works of ESR6, ESR7

and ESR8.

The first part of the deliverable (Section 2) will specifically introduce developed technologies

theoretically to provide the potential users of the software tools with a complete picture of the

technical advantages and the methodologies. In particular, Sec. 2.1 will present a pipeline

developed by ESR6 that can be used e.g. for car shape optimization. The proposed method extracts

structured data formats from continuous evolutionary optimization algorithms which can be fed to

learning algorithms for feature and representation learning. Sec. 2.2 will report the technologies

developed for resource allocation in Open Radio Networks by ESR 7, which proposes a novel

proactive dynamic optimization method based on natural computation. And at last Sec 2.3 will

introduce deep probabilistic models developed by ESR8 for user preference learning with

applications to product related data sets.

The second part (Section 3) will provide user manuals for each of the developed software modules

and packages. We visualize the structure of the software tools, the dependences, as well as the

pipeline to run the tools. In addition, some example data is provided to help the potential users

quickly test the developed software.

We conclude the deliverable with a summary of the developed software tools and provide an

outlook by giving insights into potential applications of our developed software modules and

packages. We also give suggestions to practitioners on possible ways of adapting and improving

them for a variety of different scenarios of interest.

2 Methodology

2.1 Methodology to Harness Procedural Optimization Data

Recent years have seen the advancement of data-driven paradigms in population-based and

evolutionary optimization. This reflects on one hand the mere abundance of available data, but on

the other hand also progresses in the refinement of previously available machine learning methods.

And while the application of evolutionary optimization to modern machine learning methods [1]

has regained notable interest within the recent years [2] [3] [4] [5], the reverse direction has

surprisingly been ignored. Even though within the study of natural computing methods, research

on neural and evolutionary computation have historically been strongly intertwined [6] [7] [8], as

the processing of data generated by evolutionary approaches can benefit from incorporating

flexible predictive methods. This situation comes as a surprise, as population-based optimization

routines produce over their run-time abundant data which can be considered to be complex and

intractable for study by mere intuition of the practitioner. The strength of modern neural network

methods comes particularly helpful to this regard, as they mimic the feature learning capabilities

of biological systems [9] [10], thus can be flexibly trained for different tasks, to learn

representations which help them to efficiently process and differentiate given input data.

We therefore developed methods within our work to enable practitioners to directly leverage data

generated by the optimization algorithms themselves during the optimization process. Particularly,

by developing methodology for post-processing it into a structured data format, which

subsequently allows the employment of deep learning methods to learn characteristics capable of

differentiating different continuous optimization problems and algorithms. We hope that these

methods can pave the way towards new approaches which allow practitioners to learn problem-

dependent algorithm components and recall these from predictions of inputs generated during the

run-time of an optimization algorithm. The work is largely based on the conference paper

published at IJCNN 2021 [11] and the paper submitted to SSCI 2021 [12] (under review).

We will introduce in Sec. 2.1.1 the methodology to obtain structured data formats from

optimization data using search space partitions and discuss it in the context of previous work on

algorithm behavior studies. Subsequently, we demonstrate in Sec. 2.1.2 how a pipeline using the

previously obtained structured data format can be constructed for representation learning. By this

means, features can be learned in a latent space such that different optimization problems are

sufficiently disentangled according to their different properties. At last, we demonstrate in Sec.

2.1.3 how this approach in principle be used in shape optimization (e.g. car shape optimization) as

a way of predicting problem-specific algorithm components.

2.1.1 Conversion to Structured Data Formats

Figure 1 Visualization of the process for creating search space partitions.

In the following, we will elaborate the proposed methodology to obtain structured data formats

from unstructured optimization data using methods to partition continuous search space.

Specifically, with an emphasis on the different ways how to retrieve search space partitions

through unsupervised clustering methods, and ways to impose a neighborhood relationship on

them. The necessity of such a step might not seem obvious within low dimensions, as one might

be simply inclined to equally divide the space among each axis into p pieces. However, as the

number of partitions would scale exponentially with pd at high dimensions d through this approach,

it would become infeasible if one still wants to maintain a sufficient resolution.

The principle approach is outlined in the top row of Figure 1. For a search space χ ⊂ 𝑅𝑑, we first

generate 𝐷𝑇 = {𝑥1, ⋯ , 𝑥𝑁} samples uniformly random within the search space volume. This

dataset 𝐷𝑇 can then be subsequently used as training data for a clustering methods to partition the

search space homogeneously. The number of preset clusters 𝑁𝐶 can be seen as regulating the

resolution of the retrieved partition. Specifically, we introduce in the following as clustering

methods k-means, the self-organized map and the growing neural gas.

k-Means

Applying the k-means algorithm to a given training dataset 𝐷𝑇, with a preset value 𝑘 = 𝑁𝐶 usually

results in the algorithm retrieving unstructured clusters after N iterations with centroids {μ𝑖}𝑖=1
𝑁𝐶

and without any further neighborhood relationship being imposed on them. The cluster centroids

are usually initialized randomly on the dataset and iteratively updated such that μ𝑖 =
(Σ𝑛 𝑟𝑛𝑘 ⋅ 𝑥𝑛)/(Σ𝑛 𝑟𝑛𝑘), where 𝑟𝑛𝑘 = 1 if the closest μ𝑗 for given 𝑥𝑛 has j=k, otherwise it is 0. The

cluster centroids {μ𝑖}𝑖=1
𝑁𝐶 retrieved on the basis of the k-means algorithm can be further re-

interpreted as nodes of a graph structure. To construct a graph, one simply considers for each

cluster with centroid μ𝑖 its associated decision volume V(i), finds all neighboring volumes V(j) and

subsequently builds an adjacency matrix A, with aij=1 for neighboring pairs and aij=0 otherwise.

This procedure is known as Delaunay triangulation.

Self-Organized Map

Structured clusters can be retrieved using the self-organized map (SOM) technique [13]. As

mentioned, this approach has been used in prior work [14] , [15] as a way to partition the search

space, originally motivated by work on modeling solution populations [16] within continuous

evolutionary optimization. In its usual formulation, the SOM imposes a 2-d grid structure upon the

clusters, such that the total number of clusters is 𝑁𝑐 = 𝑁𝑥 ⋅ 𝑁𝑦 and the clusters can be identified

through tuples 𝑛𝑐 = (𝑛𝑥, 𝑛𝑦) with 𝑛𝑐 ∈ [1, 𝑁𝑥] × [1, 𝑁𝑦]. In the recursive formulation [13], each

of the 𝑁𝑐 clusters is identified by a centroid 𝛍𝑖 (sometimes also called weights or model vectors),

being likewise to k-means randomly initialized on the training dataset 𝐷𝑇, and updated at each

iteration t for a given training data point x by 𝛍𝑖(𝑡 + 1) = 𝛍𝑖(𝑡) + ℎ𝑐𝑖(𝑡)[𝒙(𝑡) − 𝛍𝑖(𝑡)], where c

is the index of the best matching unit (BMU), i.e. likewise to the k-means algorithm 𝑐 =

𝑎𝑟𝑔 𝑚𝑖𝑛𝑖(||𝒙(𝑡) − 𝛍𝑖(𝑡)||), and i being the index of its topological neighbors. Here,ℎ𝑐𝑖 is a

neighborhood function with ℎ𝑐𝑖(𝑡) = α(𝑡)  exp(−||𝝁𝒄 − 𝝁𝒋||2/2σ2(𝑡)), where σ(𝑡) and α(𝑡)

are monotonically decreasing functions of t. For the former, according to literature [13] its exact

form does not matter, as long as σ(𝑡) is a monotonically decreasing function with it's value being

about half of the grid diameter in the beginning and reduced after about 1000 steps to only a

fraction of it. The use of the SOM to partition a high-dimensional space can be motivated as an

attempt to topologically 'fold' a low-dimensional space into a higher dimensional one (c.f. central

panel of Figure 2) .

The Growing Neural Gas

The growing neural gas (GNG) [17] can be considered as a variation of the former SOM [13].

However, its focus is on evolving a graph of vertices and edges (V, E) which describe the topology

of the given dataset 𝐷𝑇. Thus, in principle the total number of clusters and edges can dynamically

change during the training process. Likewise to k-means and the SOM, the training starts with 𝑁𝑐

clusters with positions μ𝑖 being randomly initialized on the dataset 𝐷𝑇. Based upon a randomly

drawn data point 𝒙 ∈ 𝐷𝑇, the nearest cluster 𝝁1 and second-nearest cluster 𝝁2 are determined. If

the cluster μ1 has edges, the ages of the edges are incremented and an error variable Δ𝑒𝑟𝑟𝑜𝑟(1) =

||𝝁𝟏 − 𝒙||2 is calculated. The cluster 𝝁𝟏 and its topological neighbors 𝝁𝒏 are subsequently moved

towards the drawn data point x by fractions ϵ𝑏 and ϵ𝑛 with Δ𝒘𝑠1
= ϵ𝑏(𝒙 − 𝝁1) and  Δ𝒘𝑠𝑛

=

𝜖𝑛(𝒙 − 𝝁𝒏) analogue to the self-organized map. If 𝝁𝟏 and 𝝁2 possess an edge, its age is set to 0

and if no edge exists, it is created anew. Edges with an age larger than amax are subsequently

removed, and likewise, clusters without an edge are removed from the gas. After a certain number

of iterations λ, the gas will insert a new cluster 𝝁𝑟. This is done, by selecting the cluster μ𝑞 with

the highest error, and subsequently inserting a new cluster half-way at 𝝁𝑟 =
1

2
(𝝁𝑓 + 𝝁𝑞) between

the neighbor with highest error μ𝑓. Subsequently, the old edges are removed and new ones are

created. Errors are of q and f are lowered by a multiplicative factor α . The new cluster r

subsequently inherits the updated error of q. At last, the neural gas decreases all errors by

multiplication with a constant d. The algorithm terminates as soon as it has achieved a predefined

network size or performance goal.

Technical Requirements

Figure 2 Different structured data formats that can be obtained using search space partitions.

To obtain structured data formats (c.f. Figure 2) using the previously search space partition

methods, a variety of existing techniques can be used. As the k-means algorithm is usually fairly

well known (e.g. [18]), we used a standard library implementation based upon the Scikit-Learn

software package [19]. Constructing Delaunay graphs of the retrieved partitions is less trivial.

However, the SciPy software package can be used for this purpose [20]. At last, optimized

implementations of the self-organized map and growing neural gas are contained within the NeuPy

library [21]. Implementations of the bespoken library methods are well supplied within the code

accompanying our report.

Table 1 List of major Python package used within this work.

Python Package Major Purpose
Tensorflow Library for constructing neural network architectures.

Keras Python interface for the usage of Tensorflow.

DEAP Provides different implementations of EAs.

SciPy Efficient calculations of distances and of Voronoi graphs.

Scikit-Learn Implements the k-Means clustering.

NeuPy Implements SOM and GNG.

In the following, we provide additional insight into possible applications for structured data

formats. With our first example being feature extraction and analysis using i.a. a custom Keras-

based [22] implementations of graph convolutions based upon a TensorFlow [23] backend in

combination with available implementations for graph coarsening operations [24]. And in the

second example considering the scenario of predicting an operator in a shape optimization scenario

using a freely available model from the ShapeNet library [25]. The optimization algorithms ES

and CMA-ES we use within our experiments are based upon readily available implementations

from the DEAP library [26].

2.1.2 Feature Extraction and Analysis

Figure 3 In traditional convolution layers (left side), filters have a smaller dimension than the given input

domain, and can aggregate features from patches of pre-defined arbitrary size from the input. In Kipf &

Welling's graph convolution [27], filters have the same dimension as the input graph, and only aggregate

features from the direct neighborhood of a given node.

In the following, we follow-up an approach originally proposed in algorithm behavior studies [14],

[15] for extracting features from procedural optimization data. Specifically, we demonstrate how

a structured data format can aid to this regard. We specifically compare in the following the

performances of different ways of processing different data formats in regards to neural network

architectures which are chosen adequately to reflect the properties of the different data formats, as

well as using different channels such as a solution channel (S), fitness channel (F) and combined

channel (S+F). Note that a special emphasis within our study lies on investigating whether the

specialized architectures for processing graph data (c.f. Figure 3) can demonstrate performance

improvements. Note that we specifically rely upon the data post-processing pipeline illustrated in

Figure 3 And as a structured data format we explicitly use finite differences between the initial and

successor generation 𝚫𝒛𝒈
𝒓 = 𝒛𝟎

𝒓 − 𝒛𝟏
𝒓 to train the networks. Note that this finite difference

interpretation may also establish a conceptual bridge to fitness landscape analytic techniques.

We train the networks upon data generated from a symmetric function set. For the combined

solution and fitness channel (S+F), we find that all networks exhibit stable training performance

and are capable of achieving high accuracies in the range of ~80-90%. Achieved values for the

networks are listed in Table 2. Note that within prior available work [14], [15], different search

spaces are used and results are only discussed qualitatively. Thus, these do not enable a direct

quantitative comparison. Overall, we find that the GNNs, trained upon graph-representations of

the search space, obtained through the GNG and Delaunay triangulations, exhibit highest training

performance on the validation sets with accuracies of about ~96%. Followed up by the CNN and

MLP with about ~84%. Looking at the obtained feature spaces in Figure 5 in Column I & II, all

compared methods exhibit clearly a high ability to separate data inputs generated on the different

optimization problems. However, one may argue, that the GNNs have a slightly better capability

in separating the clusters. Note, that by comparing the unstructured as well as Delaunay-based

approach, we can cross-check that the higher performance of the GNNs can be particularly

attributed to considering additional knowledge about the structure of neighboring partition cells.

As otherwise, the partition cells are in both approaches the same.

Figure 4 Illustration of the data post-processing pipeline. Unstructured raw data descriptive of a solution

population Pg
r at generation g and run r in the form of tuples (x, f(x)) of candidate solutions and fitness

values are converted by a search space partitioning method into a structured data format z, which

subsequently can be fed to an adequate neural network architecture for feature extraction.

A particularly interesting question is to which regard the solution channel (S) and fitness channel

(F) contribute to the training of the networks. We therefore trained all networks separately on each

channel and collected likewise accuracy values averaged over 10 training runs on each. The

resulting values are listed in Table 2. We find, that training the networks solely based upon changes

in the solution channel (S) makes them incapable of separating the inputs from the symmetric

function set. With accuracies being only in the range of ~26-30%. The bulk of performance gain

in the network training can therefore be attributed to the fitness channel (F). With the difference

in accuracy for the MLP and the GNNs to the combined channel (S+F) being only about ~1-3%.

But arguably, the inclusion of the solution channel still contributes to performance improvements.

This is most striking for the CNN, where the accuracy gain is about ~17%. While this seems

surprising at first glance, considering the fact, that by means of 'folding' the SOM into the higher

dimensional space, neighborhood relationships are created which don't reflect the actual structure

of the search space, including the solution channel (S) therefore can be considered as helping the

network in learning more accurate relationships between neighboring search space regions.

However, it can still be suspected that the solution channel can demonstrate higher efficiency under

shifts of the benchmark functions. At last, we test the behavior of our approach in regards to

normalizing the benchmark functions, fitness values and its behavior on asymmetric functions (c.f.

Column III & IV in Figure 5)). Normalizing the fitness values such that for every benchmark

function 0 ≤ 𝑓(𝒙) ≤ 1, we find that on the symmetric function set the clusters within the feature

space order themselves according to the different funnel structures of their benchmark functions

(c.f. upper left panel in column III of Figure 5). Particularly, clusters are separated into

exponential∼ 1 − 𝑒𝑥𝑝(−|𝒙|) and quadratic ~x2 funnel structure.

Figure 5 Column I and II: LDA-plots of the feature spaces obtained on a symmetric function set for the

MLP, the CNN and GNN (GNG & Delaunay) (from left to right and top to bottom). Column III & IV: LDA-

plots of the feature spaces for the GNG-based trained GNN using rescaled search space sizes and

normalized fitness values on the symmetric (left) and asymmetric function set (right). Lower row. Obtained

feature spaces for training on the solution channel (S).

Table 2 Accuracy values averaged over 10 iterations from the neural network architectures used for the

different data types within our study. For the GNNs, (1) indicates input data from the GNG, while (2)

indicates the Delaunay triangulation.

Architecture Accuracy (S) Accuracy (F) Accuracy (S+F)

MLP 30.06 ± 0.75 83.89 ± 1.45 84.19 ± 0.88

 CNN 28.00 ± 2.77 67.19 ± 2.90 84.20 ± 1.54

GNN(1) 26.95 ± 1.48 94.01 ± 0.49 96.90 ± 0.47

GNN(2) 27.06 ± 1.24 93.90 ± 0.92 96.46 ± 0.90

But notably, we find that an intra-cluster separation is still evident. Particularly, between functions

with low (Sphere & Griewank) and strong periodic modulation (Rastrigin) superimposed on them

in relation to their search space sizes. At last, we consider an asymmetric function set. Training

our graph neural network upon data generated from these benchmarks, we find initially, that the

training does not properly converge. Therefore, we apply the previously elaborated fitness

normalization step. Subsequently, we find that the network training properly converges, and we

likewise find within the feature space, that the clusters separate according to the different funnel

structures. However, in comparison to the symmetric function set, we find that training the network

solely on the solution channel likewise does not retrieve a feature space in which the optimization

problem can be.

2.1.3 Application for the Prediction of Operator Configurations

Figure 6 Column 1: Original source shape which is used within our studies to generate target shapes.

Column 2-3: Two different target shapes used within our study generated by either increasing the height

(column 2) or width of the cabin volume (column 3).

Figure 7 Retrieved median fitness curves over 10 runs for the operator configuration prediction scenario.

From left to right: With generational offset from -3 to 0. From top to bottom: For the first target shape

from Error! Reference source not found.. in column 2 (top) and the second target shape in column 3

(bottom) from Error! Reference source not found.. Red continuous curves: Default runs. Dashed curves:

For predicted configurations, with full configuration (σ, C) (green), and only covariance matrix C (blue).

In the following, we additionally provide insight into how structured data formats can be harnessed

for the prediction of inductive biases in the form of operator configurations in a shape optimization

scenario. We specifically consider in the following a scenario where car shapes are optimized, by

increasing the cabin volume along different dimensions. We construct the first one by constructing

a target shape which requires the increase of the design variable for the height dimension. And the

second one, by constructing a target shape which requires an increase in the width dimension. The

goal is then to optimize the source shape in column I such that it matches either the target shape in

column II or III, using as objective function the modified Hausdorff distance [28]

This measure calculates the similarity between the source shape X and a target shape Y. To model

in the following the inductive bias we select the operator configuration which created the highest

decrease in fitness. We collect in the following data from 200 runs where one half of it are from

the first target shape problem and the other are from the second, and subsequently use it to train a

network to directly predict these operator configurations. Explicitly, by converting procedural

optimization data into a structured format, based upon the methodology described in our previous

sections. We predict in the following the algorithm configuration as (σ, 𝑪), meaning in terms of

step-size and covariance matrix accordingly by means of training a multilayer perceptron to

approximate the regression function 𝑓(Δ𝒛) = (σ, 𝑪), where we use the finite difference Δ𝒛𝑟 =
𝒛0

𝑟 − 𝒛𝑡
𝑟, with offset t=2 for increased effectiveness. The input size of the multilayer perceptron is

100, and we use two hidden layers with 10 and 200 neurons with ReLU activation functions, such

that to sufficiently perform well in the high-dimensional regression task. For the output layer, we

choose 1 + 𝑑(𝑑 + 1)/2 neurons with a mix of linear and ReLU activation function to adequately

model the output. However, we spare in the following a more detailed discussion and instead refer

to our paper. After having jointly constructed predictor and bias, we can conduct our experiments

in the following. We therefore predict operator configurations as inductive biases in a problem-

specific manner during run-time.

Our results are plotted in Figure 7, where in the top row we display median results over 10

predictions on the first target shape problem, and the bottom row the predictions on the second

target shape problem. We further consider scenarios in which we either predict the full

configuration (σ, 𝑪) (dashed green) or just the covariance matrix C (dashed blue), as well as reset

the CMA-ES with the predicted configurations at different generational offset from -3 to 0 (left to

right). Overall, modeling the bias component by predicting the full operator configuration, i.e. the

covariance matrix C and step-size σ , leads to a result which is partly performing worse in

comparison to the baseline (red continuous) due to overshooting. More consistent performance

increases can be realized using just the predicted covariance C component. This effect can be

reasonably explained, as a high step-size prediction can in principle amplify the effects of wrongly

predicted covariance matrix C. Thus, only focusing on the latter allows the adaptive properties of

the CMA procedure to correct any wrong prediction during run-time. The effect of using the

predicted operator configuration is notably most pronounced when doing so in in the earlier

generations. However, notably this additional performance gain realized through resetting the

CMA-ES is partly negated by the expended function evaluations required to generate a prediction

first.

2.2 Evolutionary Optimization for Proactive and Dynamic Computing

Resource Allocation in Open Radio Access Network (O-RAN)

This section introduces the technologies developed for the proactive dynamic optimization with

application to resource allocation in Open Radio Access Network (O-RAN) [29]. O-RAN is a

recently proposed wireless network architecture to satisfy various demands in the wireless system

of next generations [29]. Because of the openness of O-RAN [30], all kind of operators and vendors

are able to switch their equipment into the network service, causing large and variable loads of

traffic data. Therefore, intelligent techniques are needed to automate resource allocation in O-

RAN, so as to efficiently exploit the finite computing resources and increase the service quality of

the network operators as well as decrease the energy cost of the RAN domain. In order to solve

this resource allocation problem, the literature has made some investigations. Some existing

methods formulated the problem as a clustering task, e.g. [31]. However, the method is unsuitable

as it defines the capacity utility of resource in an inappropriate way and it tends to cause much

delay to the network [31]. Considering those limitations, a new objective function that better

formulates the problem is proposed. Moreover, the existing method is mainly based on greedy

search, which is not ideal as it could get stuck into local optima of the problem. Therefore, an

evolutionary algorithm (EA) based optimization method is proposed to solve the new objective

function, finding an optimal resource allocation scheme to proactively and dynamically deploy the

computing resource for processing upcoming traffic data. Since the computing resource needs to

be proactively deployed, a multivariate long short-term memory model is used in the proposed

framework to predict future traffic data for a forward looking deployment scheme.

2.2.1 Proposed Formulation of the Computing Resource Allocation Problem

This section presents the proposed formulation of the computing resource allocation problem after

considering the limitations of the existing problem formulation [31] that are stated as follows. The

peak distribution in the formulation is redundant as optimizing the defined problem with the peak

distribution does not directly optimizing the three objectives. Besides, the existing problem

formulation is defined as making the averaged total traffic data in each cluster of 24 hours close to

the computing resource capacity when it is optimized. Moreover, when optimizing the existing

formulation, solutions with more delay in the network have more chance to survive than those with

less computing unit capacity utility.

Suppose there are N points, 1(,..., ,...,)i NR r r r= ; each point ir has a fixed position 1 2(,)i ir r (where

1

ir and 2

ir are the longitude and latitude, respectively) and data ()0 23(),..., (),..., ()
T

i h i if r f r f r=f ,

where ()h if r is sum of data of ir from h-th to (h+1)-th hour at the current day.

At the end of each day, the clustering scheme of the next day needs to be found to deploy the BBUs

to the RRHs in the network. Considering this background, the aim is to proactively cluster these

N points to K clusters to achieve the optimization objective. Therefore, this problem needs to firstly

predict the traffic data of all points and then dynamically find an optimal solution through an

optimization algorithm based on the predicted traffic data, such that BBU capacity utility is

maximal, the delay in the network and the required number of BBUs is minimal. This problem can

be also regarded as a time series clustering problem.

Let 1(,..., ,...,)i Nx x x=X be a vector such that ix l= means that the i-th point is in the l-th cluster

and ix is an integer (1 ix K ). At least one ix is equal to any value of [1,]K . The objective

function is presented as follows:

1

1
min () * ()

. . (,) (,)

K

k

k

u v u v k

F X K U C
K

s t dist r r r r C





=


= +


   


 (1)

where max() (1,2,...,)iK x i N= = is the number of clusters; (0,1] is a parameter that controls

the weight of K and
1

1
()

K

k

k

U C
K =

 ; (,)u vdist r r is the distance of any two points ur and vr in k-th

cluster kC ; τ is a threshold controlling the distance of neighboring points; ()kU C is the difference

between the sum data of points and 1 in the k-th cluster, which is defined as:
23

0

1
() | () 1|

24
k h k

h

U C f C
=

=  − (2)

where ()h kf C is the sum data of all points in k-th cluster, which is defined as:

() ()
m Ck

h k h m

r

f C f r


=  (3)

where kC is the set of all point in the k-th cluster, which is presented as follows

{ | } { | }k m m k m mC r r C r x k=  = = (4)

2.2.2 Overview of the Proposed Evolutionary Algorithm for the Resource

Allocation Problem

Due to brilliant capability of global search, evolutionary algorithms have been successfully applied

to a variety of resource allocation problems [32] [33]. However, the existing methods are not

applicable to the emerging optimization problem in the O-RAN area, since the problem

formulation in this paper is different from that in the literature. More specifically, solution

representation, genetic operators to generate offspring solutions and constraints handling

mechanisms in existing evolutionary algorithms are not appropriate for the problem formulation

in this paper. To this end, we propose an evolutionary approach, tailored for solving the new

problem formulation.

This section introduces the framework of the proposed evolutionary algorithm, which is exhibited

in Algorithm 1. Given a set of N points with their position coordinate in the network, the algorithm

firstly calculates the distance of any two points to fill the adjacent matrix. Then, the initialization

process of parameters is conducted. The initial values of the parameters gencount and d are set as

1 and startdate, respectively. After that, the initialization process of the algorithm randomly

generates a population P with a set of feasible solutions. Then, allocate the computing resources

to all points day to day from the start date startdate to the end date enddate. Within the outer loop

of the while, the first step is to input the traffic data of all points on the current day. Then, leverage

a prediction model to forecast the traffic data of all points on the next day. The input of the

prediction model is the traffic data of all points on the current day. Note that, in reality, the traffic

data of all points is only completely collected and therefore available at the end of each day. Next

step is to calculate the fitness value of all solutions in the initial population P for this day on the

predicted traffic data using the equation (5).

Algorithm 1. Framework of the proposed evolutionary algorithm

Input: A set of N points 1(,..., ,...,)i NR r r r= with their position coordinate neighborhood

threshold τ; population size popsize; maximal number of generations maxgen; start date

startdate and end date enddate.

Output: The found best solutions x
for days from startdate + 1 to enddate + 1. initP .

1. Calculate the distance of any two points
,i jdist to fill the distance matrix

,i jdistM dist= ;

2. Initialize parameters: set the count of generation gencount = 1; set the count of days d = startdate;

3. InitialPop(): randomly generate a population P with a set of popsize feasible solutions;

4. while d enddate do

5. Input the traffic data of each point ()0 23(),..., (),..., ()
T

d d d d

i i h i if r f r f r=f on the current day,

where ()d

h if r is sum of data of ir from h-th to (h + 1)-th hour at the current day;

6. Utilize a forecasting model to predict the traffic data of each point on the next day ((d + 1)−th)

()1 1 1 1

0 23(),..., (),..., ()
T

d d d d

i i h i if r f r f r+ + + +=fp based on the current day’s (d−th) traffic data d

if ;

7. Calculate the fitness value of each solution in population P based on the predicted traffic data

using the equation (1);

8. while gencount maxgen do

9. Generate an offspring population
offP using the mutation operator based on the parent

population P: Mutation(P);

10. Calculate the fitness value of each solution in population
offP based on the predicted traffic

data 1d

i

+
fp using the equation (1);

11. Combine two populations P and
offP and select the top popsize solutions as the P for the

next iteration;

12. gencount = gencount + 1

13. end

14. Select 1dx + with the smallest fitness value from P;

15. RandomClusterSplitting(P): conduct random cluster splitting on P to produce a new

population as the initial population P for the next day;

16. d=d+1;

17. end

18. Return
1 1(,...,)startdatae enddataex x x

+ +=

Afterwards, the algorithm iterates until the parameter gencount is no larger than the pre-setting

maximal number of generations. At each generation, the proposed mutation operator is used to

produce an offspring population Poff with feasible solutions based on the parent population P.

Solutions in the offspring population are also evaluated using the fitness function in equation (1).

After that, the parent population P and the offspring population Poff are combined together. Then,

the top popsize solutions with the smallest fitness values are selected from the combined

population as the P for the next generation. After the iteration, a solution with the smallest fitness

value is selected from P as the found best solution for the resource allocation problem at the d +

1-th day. Then, conduct the process of random cluster splitting on P to produce a new population

as the initial population P for the next day. At the end of the iteration of all days, output the found

best solutions for days from startdate + 1 to enddate + 1.

2.2.3 Description of Each Step of the Algorithm

We now introduce the details of three main steps in the proposed EA framework:

• Initialization process of the population: InitialPop(),

• Mutation operator to produce feasible offspring solutions: Mutation(P)

• Random cluster splitting to produce the initial population: RandomClusterSplitting(P).

These steps are specifically designed tailored for solving the resource allocation problem.

Considering that the constraint of this problem is very special, to make the algorithm concise, the

constrain handling strategy is not developed. Alternatively, those three procedures are just

designed to produce feasible solutions considering the constraint.

Population initialization. The detailed procedures of the population initialization are stated in

Algorithm 2, which aims to produce a population with popsize feasible solutions. The basic idea

is to randomly group a set of random number of neighboring points together to form a feasible

solution. The specific steps for producing each feasible solution are as follows. Firstly, a point r is

randomly selected from the set of points. Then, find all neighboring points of r to form a

neighboring set of this point CloseSet. After that, randomly pick several points with the number of

no larger than Nc to cluster them to point r, where Nc is the size of CloseSet. Repeat these steps

until all points in the set of all points are clustered.

Algorithm 2. InitialPop(): procedures of the population initialization.

Input: A set of N points 1(,..., ,...,)i NR r r r= with their position coordinate neighborhood

threshold τ; population size popsize; distance matrix disM; neighborhood threshold  ;

Output: The initialized population P .

1. for : 1 j to popsize= do

2. set the cluster count clucount as 0;

3. while all points are clustered do

4. Randomly select a point r from the set of points ;

5. Find all points from the rest points to get a set CloseSet, in which the distance of any point

to r is smaller than τ, the size of the set CloseSet is Nc;

6. Randomly pick points from CloseSet with the number of less than or equal to Nc and

group them with r as a cluster;

7. Set the value of those clustered points as clucount: xk=clucount, where k is the index of

those points grouped into the same cluster;

8. clucount = clucount + 1;

9. end

10. Get the j−th solution 1(,...,)j j

j NP x x= ;

11. end

12. Return P

Mutation operator. As the only genetic operator in the proposed evolutionary algorithm, the

proposed mutation operator combines the role of both crossover and mutation operator in normal

evolutionary algorithms. How the deigned mutation operator achieves this goal is presented in

Algorithm 3. Given the parent population P, the mutation operator produces an offspring

population Poff with popsize feasible solutions. For each based on each solution of P, the operator

firstly selects the isolated point as the set of isoPoint, in which each point is formed as one isolated

cluster. Then, randomly generate a random number randNum between 0 and 1. If randNum is

smaller than the pre-setting probability prob and the set isoPoint is not empty, randomly select an

isolated point x with the index k from the set isoPoint; else, randomly select a point from all points.

Here, prob controls the weight of decreasing the number of clusters and increasing the diversity of

the clustering scheme. For example, if prob is large, more isolated points could be given more

priority to be grouped to its adjacent clusters.

Afterwards, the mutation process is conducted on the selected point x. Firstly, find all adjacent

clusters of x as mutClusters, in which all points have the distance to point x smaller than or equal

to τ. If the size of the set mutClusters is larger than 1, just group x into one of the random cluster

in the mutClusters to decrease the number of clusters; else, randomly select an adjacent cluster C

of x and put those points whose distance to x is smaller than or equal to τ in the set Cclose with

the number of Num. After that, randomly select several points from Cclose with the number of

less than Num and group them and x into a new cluster. Following this way, feasible solutions in

the offspring population Poff can be produced. In the second case, a new cluster is produced, which

results in more cluster while increase the diversity of the clustering. Therefore, solutions with more

resource capacity utility and less delay might be searched.

Algorithm 3. Mutation(P): procedures of the mutation operator.

Input: The parent population P distance matrix disM; neighborhood threshold τ; the

probability of preferentially clustering isolated points prob.

Output: The offspring population Poff.

13. for : 1 j to popsize= do

14. Select the isolated points as the set isoPoint from Pj, each of which solely forms a cluster;

15. Random generate a number randNum between 0 and 1: randNum = rand(0; 1) ;

16. if randNum < prob and isoPoint is not null then

17. Randomly select an isolated point x with the index k from the set isoPoint;

18. else

19. Randomly select a point from all points;

20. end

21. Find all adjacent clusters of x as mutClusters, in which all points have the distance to point x

smaller than or equal to τ;

22. if size of the set mutClusters is larger than 1 then

23. Group x into a random cluster randCluster in mutClusters and set the value of xk as the

cluster number of randCluster: xk = randCluster ;

24. else

25. Randomly select an adjacent cluster C and put those points whose distance to x is smaller

than or equal to τ in the set Cclose with the number of Num;

26. Randomly select several points from Cclose with the number of less than Num and group

them and x into a new cluster;

27. Set the value of those points in the new cluster as max() 1,(1,...,)ix x N+ =

28. end

29. Get the j−th mutated solution 1(,...,)j j

j NP x x= ;

30. end

31. Return Poff

Random Cluster Splitting. Given that problems at different days have the same position

information of all points, solutions found for the previous day might be useful for the problem with

the next day. Bearing this in mind, we propose to conduct a random cluster splitting process on

the found solutions of the problem at the previous day, so as to generate a novel population as the

initial population for the optimization of the problem at the next day. The main idea is to split a

randomly selected cluster into two clusters, in which each cluster has the random number of points.

The specific procedures of the random cluster splitting is described in Algorithm 4. For each

solution in the population P, conduct the following random cluster splitting on it. Firstly, randomly

select a cluster C with more than one point as the cluster to be split. Then, calculate the number

of points in the cluster C: NR. Next, randomly generate a number between 1 and / 2NR   :

()1, / 2Nsplit rand NR=    . After that, split the cluster C into two clusters with size of Nsplit and

NR − Nsplit, respectively. Lastly, Set the value of those points in the cluster with the size of NR −

Nsplit as max() 1,(1,...,)ix x N+ = . Through this random cluster splitting process, the produced

solutions can decrease the number of clusters by 1 and therefore maintain most clustering structure.

At the same time, the diversity of the clustering structure can be increased through splitting the

cluster, which might generate better solutions for the problem at the next day.

Algorithm 4. Mutation(P): procedures of the mutation operator.

Input: The parent population P distance matrix disM; neighborhood threshold τ; the

probability of preferentially clustering isolated points prob.

Output: The offspring population Poff.

1. for : 1 j to popsize= do

2. Randomly select a cluster C with more than one point;

3. Calculate the number of points in the cluster C: NR;

4. Randomly generate a number between 1 and / 2NR   : ()1, / 2Nsplit rand NR=    ;

5. Split the cluster C into two clusters with size of Nsplit and NR − Nsplit, respectively;

6. Set the value of those points in the cluster with the size of NR − Nsplit as

max() 1,(1,...,)ix x N+ =

7. Get the j−th solution 1(,...,)j j

j NP x x=

8. end

9. Return P

2.3 Representation Learning with User-Generated Data

User preference is critical in product design. To automatically detect customer opinions on aspects

and features of products, we propose a novel method, which combines the strengths of statistical

machine learning and deep neural networks, to analyze user generated data, including texts and

behavior. This method will facilitate the manufacturers to perform user-centric product design, and

thus increase satisfactory of their customers. The achieved results leads to the publication

Interpreting Node Embedding with Text-labeled Graphs [34]. The following sections introduce

the technical part and theoretical advantages of the proposed method.

2.3.1 Improving Node Embedding Interpretability

In recent years, with the advent of more powerful and capable machines, researchers have started

focusing more and more on developing (deep) neural architectures for a wide range of applications.

The success of neural-based approaches in different domains, as language modeling or computer

vision, led these models to become the default choice for a wide range of applications. However,

despite the impressive performances, some drawbacks are notably serious. First, many works have

proved how easy is to fool a deep learning model by altering the input data with some perturbation.

Experiments show that some changes in an image or a text would lead the model to completely

miss the right label with high confidence. Second, deep learning approaches are generally

considered as black-boxes. Given the obscure nature of neural-based methods, the latter are not

able to deliver interpretable results and do not have a strong theoretical foundation. This is

probably the best-known lack in this area and, depending on the domain, this problem can be

crucial. For example, in a medical application, how can we trust a diagnosis suggested by an

algorithm with high accuracy but without a complete understanding of the output? In automotive

design, how can a manufactory invest in a new car design if we cannot investigate the reasons

behind a given algorithmic decision? In business scenarios, how can a company make some

possible profitable decision without understanding if the proposed move is the right one or not?

Both limitations are particularly serious when dealing with real-world applications and decisions

that could have an economic or social impact. Consequently, the wide use of machine learning

methods in industrial, medical, and socio-economical applications is requiring the research

community to provide explanations about the results. For this reason, interpretable AI has been

increasingly receiving more and more attention across different scientific disciplines and industry

sectors.

In this context, user-generated data (e.g. reviews, social posts, body measurements) could play a

primary role to fill the gap between humans and AI. In addition, they may be used to discover

market trends, user preferences and to improve market strategies and productivity. For example,

for recommendation tasks, recent studies in the area tend to conclude that numerical rating data

are not informative enough for discovering user preferences. Consequently, given the availability

of large collections of textual data, such as product reviews and social media posts, many

approaches have tried to extend and improve recommendation models by leveraging such textual

information. In fact, corpora of textual documents contain a wealth of information. On the one

hand, they may help users to make more conscious decisions. On the other hand, they may be used

to improve the predictive performances of recommendation systems.

Given the complexity of modeling user-generated information, researchers have simultaneously

started to develop new techniques to improve and speed up the learning phase of these

computationally demanding models. Due to the flexibility, effectiveness, and applicability for

different tasks, representing items, words, and documents as vector representations, also known as

embedding, has become a common procedure lately. The resulting vector representations are

useful since they can reduce the dimensionality of the data and, at the same time, provide

meaningful representations in the latent space. However, these embeddings are usually not

explainable; if singularly evaluated, a 100D or 200D vector makes little sense from the human

perspective and is not informative. The main limitation of these techniques laid in the fact that they

can capture relations among items by using vectors that are only meaningful to each other. For

instance, in a recommendation system scenario, if we try to evaluate user vectors without

employing the review vectors, we would not be able to comprehend the latent textual information

associated with them. To gain trust and to promote collaboration between AIs and humans, it

would be better if those representations were intrinsically interpretable for humans.

Figure 8 - Example of node embedding

In our work [34], we focus our attention on developing an approach for improving the

interpretability of node embedding. Many real-world user data are represented in forms of graphs,

e.g. social networks, recommender systems and citation networks, since the graphs can capture

relations and interactions of the involved entities. The performances, here too, are usually

improved by using methodologies that represent the graph entities (e.g. nodes) through vector

representations while preserving some structural information about the system. For instance, many

graph neural network (GNN) approaches formulate graph learning with node embedding, and the

downstream task, such as link prediction, node classification and (sub-) graph classification, is

modeled with node embedding vectors. However, in terms of interpretability, most of the

embedding approaches applied on graphs can provide meaningful representations in the latent

space, but neither the single numbers contained in the vectors nor their dimensions have an

interpretable meaning [35] (see Figure 8 for an example of node embedding). In this context, there

are few previous works attempting to improve the interpretability of node embeddings. The

existing works mainly aim to explain the embedding dimensions as clusters in an implicit manner,

e.g. employing Canonical Polyadic decomposition [36], and assigning a meaning to each vector

dimension [37]. Unlike these approaches, our method focuses on improving the interpretability of

node embeddings explicitly to get human understandable explanations by exploiting the extra

textual information associated with the graphs. In fact, in many applications, nodes and edges in a

graph are often associated with textual data, e.g. reviews in user-product graphs, social media posts

in social media or medical narratives in doctor-patient graphs. Consequently, a question naturally

arises: could we integrate the textual information in the learning phase to improve the

interpretability of node embedding? Our method maps the latent space of node embeddings into

textual space through word-based vectors. Thus, the additional available textual information works

as a human-understandable source to generate explanations of node embeddings. As reported in

[38], the most nuanced and sophisticated medium to express our feelings is our language. For this

reason, we believe is important to understand and organize the textual information in a structured

and intuitive way.

2.3.2 Generating Textual Explanations for Node Embeddings

We present an approach to represent the latent space of node embedding into a textual space by

exploiting the available human-understandable information (i.e. the textual information) to

interpret the embedding vectors. Starting from a text-labeled graph, we integrate the textual

information into the model to learn interpretable node embeddings. For each node 𝒊, we generate

a textual explanation that is formulated as a node-specific word distribution conditioned on its

embedding vector 𝒙𝒊 . Since the creation of the word-vectors is directly linked with the node

embeddings (which are supposed to work well in downstream tasks), we use an objective function

that combines the accuracy of a downstream task (e.g. rating prediction, sentiment analysis) with

the likelihood of the textual corpus. We introduce an additional node clustering to model the

patterns among the embedding vectors, the corresponding textual explanations, and the associated

texts. The additional cluster assignment allows our model to learn the discrete structure of the

graph data. In summary, our model attempts to combine two objectives: a) learn node embeddings

that perform well in downstream tasks b) generate textual explanations of the learned vector

representations.

After data preparation and subsequent vocabulary selection, our software comprises two major

parts:

1. Generation of the textual explanations with our implemented model.

2. Evaluation of the results through both quantitative and qualitative experiments.

The detailed information about the above steps has been given in deliverable D3.3.

After preprocessing the raw review texts and performing the vocabulary selection, we are able to

learn textual explanations for node embeddings by training our model. The schematic view of our

architecture is presented in Figure 9.

Figure 9 - Schematic view of our model. Dashed boxes represent input (non-trainable) data. The line connections depict the

dependencies between the involved variables.

The learning of the node embeddings and the corresponding textual explanations is driven by two

learning objectives. The first objective is the log-likelihood of the review corpus. The parameters

to be learned include embedding vectors of clusters {𝒄𝑘}𝑘=1
𝐾 and {𝒄ℓ}ℓ=1

𝐿 , and parameters 𝜙, 𝜉, 𝛾

and 𝜌 that define the neural networks 𝑓, 𝑔 and 𝜓. Thus, the log-likelihood of an edge and the

corresponding text is:

ℒ1 = log 𝑝(𝑒𝑖,𝑗 |𝒙𝑖, 𝒙𝑗 , 𝛾) +

 + ∑ log (∑ ∑ 𝑝(𝒛𝑖 = 𝑘|

𝐿

ℓ=1

𝐾

𝑘=1

𝑆

𝑣=1

𝒙𝑖, 𝒄𝑘, 𝜙)

 𝑝(𝒛𝑗 = ℓ|𝒙𝑗, 𝒄ℓ, 𝜉)𝑝(𝒘𝑖,𝑗,𝑣|𝒄𝑘 , 𝒄ℓ, 𝒙𝑣, 𝜌))

where the first term represents the probability that an edge exists between two nodes. This is

implicitly included in the computation of the textual information since we suppose that every edge,

if exists, has some associated text.

The second objective is the error of the predictions. In our study case, this will be the rating

prediction error.

ℒ2 =
1

𝑅
(𝑟̂𝑖,𝑗 − 𝑟𝑖,𝑗)

2

with

𝑟̂𝑖,𝑗 = ℎ ([
𝒙𝑖

𝒙𝑗
] ; 𝜔)

where ℎ(⋅) can be any complex function. In our case, ℎ(⋅) defines a deep neural network with the

concatenation of the node embeddings 𝒙𝑖 and 𝒙𝑗 as input and 𝜔 as hyperparameters.

Finally, we can define the complete objective function as:

min
Θ

 ℒ = min
Θ

 (ℒ1 + 𝜇ℒ2)

where Θ represents the parametric space and 𝜇 is a hyperparameter to trade-off the importance of

the prediction accuracy (i.e. mean squared error (MSE)) and the negative log-likelihood (NLL) of

the corpus.

The hyper-parameters of the architecture were hard coded in the training script and, if necessary,

need to be changed in the corresponding Python file.

Output

• 𝛽 is a 3D tensor representing the probabilistic patterns among user clusters, product

clusters and words. In particular, 𝛽𝑘,ℓ,: specifies a categorical word distribution conditioned

on the user cluster 𝑘 and the product cluster ℓ. It lies in a (𝑉 − 1)-dimensional simplex

Δ𝑉−1, i.e. ∑ 𝛽𝑘,ℓ,𝑣
𝑉
𝑣=1 = 1 and 𝛽𝑘,ℓ,𝑣 > 0. 𝑉 denotes the number of words. In Figure 9, this

matrix is specified by the upper-right squared box. In few words, this matrix represents the

probability that a given word 𝑤 ∈ 𝑉 would explain a specific user-product cluster

combination (𝑘, ℓ).

• 𝜃𝑖,𝑘 specifies the probability of the user 𝑖 to belong to the user cluster 𝑘.

• 𝜃𝑗,ℓ specifies the probability of the product 𝑗 to belong to the product cluster ℓ.

2.3.3 Evaluation of the Generated Textual Explanations

We can use 𝛽, 𝜃𝑖,𝑘 and 𝜃𝑗,ℓ, for the following purposes:

1. Generation of word-vector distributions for node embeddings. In this way, we are able to

generate textual explanations for node vector representations that would be non-

interpretable otherwise.

2. Quantitative evaluation of the generated explanations. Even though our case study can be

evaluated by just relying on human perception of the highlighted relevant words, we

introduce some metrics that could further help on assessing the quality of the results.

3. As explained before, 𝛽 specifies the word distributions for each combination of user and

product cluster (𝑘, ℓ). We can plot them into a 2-dimensional space to understand whether

there is any cluster organization. This would give additional information about the

underlying structure of the analysed items, further enhancing the interpretability of the

results.

To illustrate the results, we use a typical review network as a running example. Assume there is a

bipartite graph 𝓖 with 𝑵 number of users and 𝑴 number of products. Between a user 𝒊 and a

product 𝒋, there is an edge 𝒆𝒊𝒋. Each edge is associated with a set of words (namely, a review) 𝒔𝒊𝒋 =

{𝒘𝒊,𝒋,𝟏, … , 𝒘𝒊,𝒋,𝑺} and a rating 𝒓𝒊𝒋. The size of the vocabulary, for each product category, is 𝑽. The

number of reviews is 𝑹.

All the generated results and figures can be reproduced using the Jupyter notebook available in the

repository.

Generation of word-vector distributions

For a node, e.g. a user 𝑖, the textual explanation is formulated as a node-specific word distribution

𝑝(𝒘𝑣|𝒙𝑖) conditioned on its embedding vector 𝒙𝑖.

In particular, the probability of a word 𝑣 to be used to explain the embedding 𝒙𝑖 is computed as:

𝑝(𝒘𝑣|𝒙𝑖) =
1

𝐿
∑ 𝜃𝑖,𝑘 𝛽𝑘,ℓ,𝑣

𝑘,ℓ

This is a marginal distribution over all possible user and product clusters. Since the target

distribution is not related to any specific products, the product clusters are equally distributed, i.e.

the term 1 𝐿⁄ in the equation above. Textual explanations for product nodes can be generated in an

equivalent manner. Error! Reference source not found. depicts the word-distribution for a given

node.

Figure 10 – Interpretability case study on a random node. The figure depicts the node-specific word distribution; the 15 highest

probabilities are highlighted by green points. TOP-15 WORDS and NODE-RELATED WORDS refer to the sets 𝐴 and 𝐵 defined

below. Black bold represents the overlapping words; blue bold highlights words that may explain further characteristics of the

analyzed node.

In terms of interpretability, as already mentioned, the main limitation of the common techniques

laid in the fact that they can capture relations among items by using vectors that are only

meaningful to each other. Differently, our model can directly encode the textual information within

the estimated quantities Indeed, through our representation, each dimension of the vector

corresponds to a word in the vocabulary and each value represents the probability that the

corresponding word would explain the selected node, providing vectors that are self-explainable.

Quantitative evaluation of the generated textual explanations

To visualize and evaluate the correlation between the generated word distributions and the node-

related words in the data, we proceed as follows. Given a sampled node, we first extract the top-

15 words in the generated word distribution, i.e. the 15 words having the highest probability in the

distribution. Second, we extract the set of words associated with this specific node in the data. Let

denote with 𝐴 and 𝐵 respectively, these two sets.

The Jaccard similarity is used to measure similarity between two sets of words 𝐴 and 𝐵, which is

defined as follows:

𝐽(𝐴, 𝐵) =
|𝐴 ∩ 𝐵|

|𝐴 ∪ 𝐵|

To further capture the semantic similarity of the two sets, we integrate the Word Mover's Distance

(WDM), introduced by [39]; this metric takes into account the word similarities in the word

embedding space and computes the minimum distance that the words in text 𝐴 need to travel in

the semantic space to reach the words in text 𝐵. Since Jaccard and WDM have different scales and

behaviors, we apply MinMaxScaler to Jaccard, and transform WDM as follows:

𝑡 − 𝑊𝐷𝑀(𝐴, 𝐵) = 1 − (
𝑑𝑖 − min (𝒅)

max(𝒅) − min (𝒅)
)

where 𝑑𝑖 is the distance between the sets 𝐴 and 𝐵 for a node 𝑖, and 𝒅 represents all the distances

between the two sets for each node in the graph. In this way, the transformed distance score is in

the range [0,1] and, opposite to the definition of semantic distance, the higher the value the closer

are sets 𝐴 and 𝐵.

We investigate the quality of the generated textual explanations by computing these scores for

different data sets. Error! Reference source not found. illustrates the distribution of values of

these measures across the nodes in the data sets.

Figure 11 - Evaluation of the metric distributions across all data sets.

In this case, the Jaccard values mostly vary in the range [0.4 − 0.7], while the WDM scores are

highly concentrated in the range [0.6 − 0.8]. Note that the lower Jaccard scores do not affect the

performances of the model, instead, confirms that it is able to generate textual explanations that

are not redundant as would have been with too high similarity scores. Indeed, as written in [40],

two sets of words can be semantically similar even with low lexical overlapping.

Analysis of the probabilistic patterns

For each category, to visualize the learned word-vector distributions, the t-SNE method [41] is

employed for dimensionality reduction. The sklearn package can be used for this purpose.

Python package Usage
sklearn sklearn.manifold.TSNE(n_components=2)

Error! Reference source not found. illustrates the cluster organization for different categories

taken from our experiments. One can find that the clusters are well structured and mapped into the

2-dimensional embedding space with different distributions. For further analysis, we select a pair

of clusters from two different categories, and we compute the corresponding average word

distribution. In theory, one could infer the main topic of each cluster looking at the most probable

words of the averaged cluster word distribution. The table reports the most probable words for

each of the selected clusters. The results validate our hypothesis since, for each cluster, we can

infer the sub-category of interest. For instance, the first cluster in the Pet Supplies category refers

to the grooming sub-category, while the second one focuses on aquariums. Thus, the word

distributions 𝛽⋅,⋅,𝑣 capture the latent structures of the data and help to find the patterns between user

and product clusters, enhancing the interpretability of the results. Indeed, knowing the user and

product cluster assignments one can find the sub-categories highly correlated with the given items.

Figure 12 – Cluster organization of the word-vector

distribution 𝛽⋅,⋅,𝑣 for different product categories. The cluster

analyzed in the table are highlighted in cyan.

3 Manual of the Developed Software

3.1 Obtaining Structured Data Formats and Extracting Features from

Procedural Optimization Data

The code we provide with our report is based upon our work ‘Artificial Neural Networks as

Feature Extractors in Continuous Evolutionary Optimization’ [11] and as elaborated in Section

Feature Extraction and Analysis2.1.2 can be used to replicate the results for feature extraction

and analysis on the given synthetic benchmark function set. The tool is implemented with Python

3.0 and the required packages are elaborated in the aforementioned technical requirements part of

Section 2.1.1 .

We provide in summary within our code mainly two different functionalities:

• The first one being methods to generate training data for a given search space volume and

subsequently setup the different search space partition methods.

• And the second one being methods to replicate the feature extraction and analysis studies

on the synthetic benchmark function set as contained within our paper.

The software tool is organized as follows:

Figure 13 - Folder and file organization of our framework.

One can proceed with the provided code within our repository to replicate the results as follows,

roughly according to the data post-processing pipeline as elaborated in Figure 4.

1. Selection / Setup of a Search Partition Method

2. Data Generation from Synthetic Experiments

3. Conversion of Unstructured Raw Data into a Structured Format

4. Loading and Preparation of the Structured Data for Training

5. Training of a Neural Network Architecture

6. Subsequent Feature Extraction and Analysis

The folder organization is elaborated as in Figure 13. We already provide experimental data from

step 1), 2) and 3) in the folders model_data, ea_data and histogram_data respectively. So in

principle, depending of one’s preferences, one can skip any step between 1) – 3) without requiring

the execution of the previous ones. The folder gcn contains the necessary custom operations for

graph convolution and pooling. Where the former is a custom Keras implementation and the latter

is based upon MIT licensed code accompanying the original paper from Defferrard et al. [24].

Different implementations of evolutionary algorithms from the DEAP library licensed under

LGPL-3.0 that can be used for experimentation are provided in the ea_generate folder.

Otherwise, the scripts training_*.py can be used to generate partition models,

histogram_calculation_*.py to obtain structured data formats and Notebook-*.pynb to

experiment with network architectures and analyze their feature extraction capabilities are

contained within the main folder.

In the following, we will give a more in-depth description on how to use the scripts according to

the previously elaborated step-by-step description.

Step 1 - Setting up a Search Space Partition Method

The scripts training_som.py, training_kmeans.py and training_gng.py implement the

differently elaborated search space partitions. Upon being called from the command line or via an

IDE, the script clustering_training_data_generator.py is imported and the

generateTrainingData method is called to generate a training data set which exhaustively fills

the search space and can subsequently be used for the setup of the aforementioned search space

partition methods. Trained partition models are subsequently stored in the model_data folder.

Step 2 - Data Generation from Synthetic Experiments

Calling from the ea_generate folder e.g. the (𝜇+𝜆)-ES via m-plus-l_evolution-stategy.py

using the command line or within an IDE, starts experiments with preset experimental parameters

contained in the file. Note that we rescale any generated solutions to a search space size of [-30,

30]d such that to ensure a uniform format for the subsequent application of a search space partition

methods. Any subsequently generated files are stored within the ea_data folder for further

processing.

Step 3 - Converting Unstructured Raw Data into Structured Data

To convert the unstructured draw data into a structured data format the scripts

histogram_calculation_som.py for the self-organized map, int,

histogram_calculation_kmeans.py for the k-means algorithm as well as as well as

histogram_calculation_gng.py for the growing neural gas can be used. The obtained

structured data format from running the scripts is stored in the folder histogram_data.

Subsequently, it can be used for the training of neural network architectures.

Step 4 - Replication of Experiments

The Jupyter Notebooks Notebook-SOM-MLP.ipynb, Notebook-SOM-CNN.ipynb and Notebook-

SOM-GNN.ipynb contain the necessary code to replicate the previously elaborated experiments on

in regards feature extraction and analysis.

3.2 Evolutionary Optimization for Proactive and Dynamic Computing

Resource Allocation in Open Radio Access Network

The repository contains code for the work Evolutionary Optimization for Proactive and Dynamic

Computing Resource Allocation in Open Radio Access Network, which is prepared to submit to

the journal of Information Sciences. As the paper has not been published, the code for this work

will be released in the website of ECOLE later. The scripts are based on Python 3.7, and have been

tested on Linux and Windows systems.

To get the results of comparing the proposed evolutionary algorithm (SplitEA) against the existing

method (the greedy algorithm) and two variants of SplitEA (RandEA and CopyEA) on real-world

and artificial datasets, the codes contain all the necessary steps to run the experiments:

1. Pre-process the raw network traffic data.

2. Generate artificial network traffic data with the location data and traffic data.

3. Apply the Long Short-Term Memory model to predict the traffic data (if the algorithms

run on the datasets with the prediction);

4. Run all compared algorithms on all datasets.

The organization of our software tool is shown as below:

Figure 14 - Folder and file organization of our framework.

The primary idea of preprocessing the real-world data is to make each point in the location dataset

has traffic data at each hour of a set of continuous days in the corresponding traffic dataset.

Considering that four found datasets have different forms of types, the preprocessing is different.

Step 1 –Data preprocessing

All codes for the data preprocessing are put in the fold ‘Data Preprocessing’ for all four real-world

datasets. All preprocessed datasets are put in the fold ‘Preprocessed Data’.

Milan dataset [42]: we firstly collect the locations and coverage areas of active base stations

observed in the two months at the website https://www.cellmapper.net/map from 11/01/2013 to

12/31/2013, to get the file LocationCoverageBSMilan.xlsx, from which the coverage

information of those base stations is separately extracted as the file CoverageRRHMilan.xlsx. The

row traffic data can be found in the link of paper [42]. The following py. files need to be run in

order to preprocess the row traffic data:

1. generate_kaggle_dataset.py: generate the kaggle dataset from the original dataset;

2. convert_traffic_volume_by_ID.py: calculate the traffic of each grid by adding all

activities (smsin, smsout, callin, callout and internet) for each grid regardless of the

countrycode;

3. calculate_RRH_traffic.py: calculate the traffic of each RRH (Remote Radio Head) in each

base station, according to the coverage information (CoverageRRHMilan.xlsx) of each RRH;

4. normalize_AllDaysTraffic.py: normalize all RRHs traffic data on all hours of all days'

maximal and minimal traffic to the range of [0,1].

https://www.cellmapper.net/map

Songliao dataset [43]: process_Mobility1.py and process_Mobility2.py conduct the

preprocessing. It first calculates the data of each point through adding all weights of coming to this

point and originating from this point. After that, if there is one or more hours when some points

do not have the data, delete those points from ‘GPS.txt’ and delete those rows with the data for

those points to get the file ‘GPS.txt’. Finally, normalize the data of each point to the [0, 1] range.

Archive dataset [44]: sortHourCell.py sort the traffic data on the hour in an ascending order.

Then, delete those rows with the day if there is no data at one or more hours on those days. Next

select the dataset with longest continuous days. Finally, the file

normalize_SplittedDataByDay.py normalizes the data of each point to the [0, 1] range.

C2TM dataset [45]: generate_kaggle_dataset.py generate the dataset for each day from the

row dataset file ‘cellular_traffic.csv’. Given that there are too many base stations in the dataset, a

subset of the total dataset is selected using the file selectSubset.py. Lastly, the file

SubsetData.py normalizes the sub-set to the range [0,1].

Output files: datasetname-date-traffic.csv where “datasetname” is the name of four real-

world datasets and “date” is the dates of the real-world dataset. One of the examples of Archive

dataset on 2018.02.12 is Archive-2018-02-12-traffic.csv.Another output file is the location

dataset: datasetnameLocation.xlsx.

Step 2 –Generate Artificial Datasets

Considering that each dataset has the location dataset and traffic dataset, several datasets are

generated for both location dataset and traffic dataset, each of which has three different types

generated datasets. All codes for the data generating the artificial datasets are put in the fold

‘Generate Artificial Datasets’. All generated artificial datasets are put in the fold ‘Generated

Artificial Datasets’.

Three types of location datasets:

1. All points are totally randomly generated within a range;

2. High cohesion and low coupling w.r.t distance of points, which means that the distance of any

two points in the same cluster is smaller than τ and the distance of any two points in different

clusters is larger than τ, the maximal number of generated points in each cluster is Np.

3. Many points are gathered together while others are scattered away from those points. Ng and

Nt are the number of gathered and total points, respectively

Three types of traffic datasets:

a) Totally randomly generated from (0,1) for each point at 24 hours of each day;

b) Generate the traffic data in a way that the optimal value of the objective function is known for

the second case of the location dataset. More specifically, for each cluster in which all points

have the distance close to each other smaller than τ, just split it into several sub-clusters and

then generate the traffic data such that the total traffic data in each sub-cluster is equal to 1 at

each hour of a day.

c) Follow the pattern of existing real dataset Milan and Songliao. For the pattern of Milan dataset,

the traffic data for most points firstly decreases at the first five or six hours of each day and

then increases until noon. Then, it remains stable at five or six hours and lastly it decreases.

As for the pattern of Songliao dataset, it firstly increases until eight or nine of each day and

then remains stable for ten or eleven hour and lastly decreases. Those patterns are extracted

from the traffic dataset of Milan and Songliao datasets.

There are 8 generated artificial datasets with seven days, which includes 1a, 2a, 3a 100/158, 3a

120/158, 1c-Milan, 1c-Songliao, 2b-Np=10 (Nt=174) and 2b-Np=5(Nt=185). Among those

datasets, ‘1’, ‘2’ and ‘3’ means the first, second and third location dataset, respectively; ‘a’, ‘b’

and ‘c’ means the first, second and third traffic dataset.

Output files: similar to the output files of the pre-processing in step 1, there are two types of

output files: traffic and location dataset. datasetname-date-traffic.csv where “datasetname”

is the name of four real-world datasets and “date” is the dates of the real-world dataset. One of the

examples of Archive dataset on 2018.02.12 is Archive-2018-02-12-traffic.csv.Another

output file is the location dataset: datasetnameLocation.xlsx.

Step 3 –Conduct the Prediction on Archive and Milan Datasets

Even though there are four real-world datasets, only two datasets (Archive and Milan) have enough

days to do the prediction. Therefore, a two stacked multivariant Long Short-Term Memory model

is used to do the prediction. The first 70% days of those two datasets is regarded as the training set

with the remaining days as the testing set are split into training and test datasets. The file

MultivarIO_LSTM_AE_Traffic.py is used to achieve this functionality.

Command to run the file: python MultivarIO_LSTM_AE_Traffic.py

Output files: Pre-datasetname-date-traffic.csv where “datasetname” is the name of four

real-world datasets and “date” is the dates of the real-world dataset, e.g.: Pre-Archive-2018-05-
29-traffic.csv.

Step 4 –Run all compared algorithms on all datasets.

Run all compared algorithms on all real-world datasets and artificial datasets. All related .py files

are described as follows:

ClusteringSingleProblemFinalModel.py describes the proposed problem formulation in the

paper mentioned before. Crossover.py and Mutation.py are the crossover and mutation

operators used in the proposed evolutionary algorithm. Sampling.py is the initialization process

for the proposed evolutionary algorithm. GreedyAlg.py is the file of the existing work greedy

algorithm. ProposedEA.py is the file of the proposed evolutionary algorithm.

When running the experiment, just run the file of GreedyAlg.py and ProposedEA.py using the

command python GreedyAlg.py and python ProposedEA.py.All problem- and algorithm-

related parameters are set in those two files.

Open-source software like a library that was used in this software, i.e., python libraries used in

pre-mentioned steps:

• Data pre-processing: numpy, pandas, datetime, dateutil, time;

• Artificial dataset generation: numpy, pandas, random, datetime, math,

• Traffic dataset prediction: numpy, pandas, datetime, time, math, tensorflow

• Running the algorithms: math, openpyxl, datetime, time, numpy, pandas, random, copy, sys,

os, pymoo [47]. Pymoo is a library of multi-objective optimization in python. Detailed

information can be found in [47] and the website: https://pymoo.org/.

Graphics processing unit (GPU) can be used to run the scrip MultivarIO_LSTM_AE_Traffic.py

if GPU is applicable.

Output files: for evolutionary algorithms, there are two output xlsx files: DynaGAStrategyF.xlsx

and DynaGAStrategyX.xlsx, where “Strategy” is the strategy to generate a new population for

each day except for the first day. For the greedy algorithm, there are also two output xlsx files:

DynaGreedyAlgF.xlsx and DynaGreedyAlgX.xlsx. The first file with the ending of “F.xlsx”

stores the found four metrics and the fitness value at each day under 30 independent runs. The

second file with the ending of “X.xlsx” stores the found optimal solution (clustering scheme

specifying which point belongs to which cluster) at each day under 30 independent runs.

https://pymoo.org/

3.3 Interpreting Node Embedding with Text-labeled Graphs

The code for the work [34] is implemented with Python 2.7, and has been tested on Linux OS. The

figure below visualizes the organization of our software package:

Figure 15 - Folder and file organization of our framework.

The python file utils.py contains paths, hyper-parameters and functions needed to run all the

steps of the software. The list of product categories to evaluate can be changed in this file. Please,

ensure to first download the corresponding raw review data from the link provided before and save

them in the data folder.

We saved a pre-trained language model (preprocessed_data/pretrained_language_model);

this will serve as a pre-trained language model for our model and will be fixed for the whole

pipeline. Note that the pre-trained language model can be downloaded from other source.

Data sets

In the repository, we uploaded a small product category for experimentation, i.e. Patio. The raw

reviews are contained in the directory data/patio/reviews. All the product categories are

publicly available at: https://jmcauley.ucsd.edu/data/amazon/. Please note that we use the 5-core

version of these data sets.

Dependencies

All the dependencies are installed if pip install –r requirements.txt is run.

If available, it is possible to use a GPU infrastructure to run the architecture faster. These scripts

have been tested with tensorflow_gpu 1.13.1, cuDNN 7.4 and CUDA 10.0.

https://jmcauley.ucsd.edu/data/amazon/

Data preprocessing

Before training, some data preparation is needed to run the architecture. This includes data

cleaning, vocabulary selection and data splitting. To preprocess the data, run the following bash

command:

bash preprocess_data.sh

Training

Run the architecture - Once we prepared the data, we can run the architecture. To train the model,

run the following command:

python run_ignn.py

Input files

• train_test_data/{category_name}/5core/users_map.pkl

Dictionary of the form {userID: index}

• train_test_data/{category_name}/5core/products_map.pkl

Dictionary of the form {productID: index}

• train_test_data/{category_name}/5core/{}_train.pkl

Replace {} with either ‘users_ID’, ‘prods_ID’, ‘words’, ‘ratings’.

List of training data for users, products, ratings and reviews (i.e. biterm lists).

• train_test_data/{category_name}/5core/{}_test.pkl

Replace {} with either ‘users_ID’, ‘prods_ID’, ‘words’, ‘ratings’.

List of testing data for users, products, ratings and reviews (i.e. biterm lists).

• train_test_data/{category_name}/5core/keywords_mat.pkl

File containing the 𝑉𝑥𝐷 vocabulary matrix, i.e. the vector representations of the words

contained in the vocabulary (note that the vector representations are taken from the

pretrained language model)

Output files

• results/{category_name}/5core/iGNN/beta.pkl: the file stores the 𝛽 matrix as a

.pkl file. This matrix will be used for the quantitative and qualitative evaluation of the

generated explanations, as explained in the technology part.

• results/{category_name}/5core/iGNN/z_users.pkl: the file stores 𝜃𝑖,𝑘 , i.e. the

probabilities of user 𝑖 to belong to cluster 𝑘. For all users and user clusters.

• results/{category_name}/5core/iGNN/z_prods.pkl: the file stores 𝜃𝑗,ℓ , i.e. the

probabilities of product 𝑗 to belong to cluster ℓ. For all products and product clusters.

• results/{category_name}/5core/iGNN/mse_evaluation.csv: the file stores the

train and test MSE values for each evaluated epoch.

• results/{category_name}/5core/iGNN/nll_evaluation.csv: the file stores the

train and test NLL values for each evaluated epoch.

Results evaluation

We can use the learned parameters 𝛽, 𝜃𝑖,𝑘, and 𝜃𝑗,ℓ to generate textual explanations for nodes. To

visualize and evaluate the results, we provided a Jupyter notebook file

(results_visualization.ipynb). This file contains all the instructions to reproduce the results

reported in the paper, and to create the output showed in Section 2.3.3. Apart from reproducing

the reported results, the notebook can be used to manually explore the results.

4 Summary & Outlook

This deliverable reports the software modules and functionalities developed in WP3 of the ECOLE

project. To facilitate the potential users to easily utilize the software for their research, we illustrate

each functionality with respect to: technical contributions and advantages, implementation details,

package dependencies, and pipelines of how to run the software tool properly. Some example data

is provided as well for the users to test the software straightforwardly. In summary, the software

contributes the following three functionalities with superior performance compared with recent

baselines, and can be applied to difference domains.

The first function is designed to focus on improvement of population-based optimization

algorithms themselves. The procedural metadata generated from such optimization algorithms is

used to learn the structure of the optimization problems, and improve the performance of the

optimization algorithms. A possible application scenario could be shape optimization. We have

demonstrated the application in the deliverable. Generally, the practitioner is free to experiment

with our pipeline and apply it to other similar scenarios e.g. algorithm selection and configuration.

Another function the software provides is resource optimization, in particular, allocating

computing resource proactively to serve e.g. upcoming traffic load in ORAN. This function

formulates the problem as a clustering problem with additional optimization objective of

minimizing the number of the clusters. A novel evolutionary method is introduced to find better

allocation scheme. The function can be used for other related resource optimization problems, for

example, assigning resource for edge computing.

Last but not least, the software provides a function for product feature optimization towards user

preference. The function can elicit user opinion on product characteristics from user generated data

(texts and behavior). Instead of a black box method, the proposed software tool especially

improves the interpretability of the results, and can learn human-understandable explanations for

users/products. This function can also be used for different learning tasks and domains. The typical

examples might include medical applications (doctor-patient graphs with medical narratives) and

social media recommendations.

The developed software reported in the deliverable can be downloaded from the ECOLE public

GitHub repository (https://github.com/ECOLE-ITN). The researchers are encouraged and

appreciated to utilize our tools to compare their own methods for future research.

https://github.com/ECOLE-ITN

5 References

[1] Y. LeCun, Y. Bengio and G. Hinton, "Deep learning," Nature, vol. 521, p.

436–444, 2015.

[2] F. P. Such, V. Madhavan, E. Conti, J. Lehman, K. O. Stanley and J. Clune,

"Deep neuroevolution: Genetic algorithms are a competitive alternative for

training deep neural networks for reinforcement learning," arXiv preprint

arXiv:1712.06567, 2017.

[3] T. Elsken, J. H. Metzen, F. Hutter and others, "Neural architecture search: A

survey.," J. Mach. Learn. Res., vol. 20, p. 1–21, 2019.

[4] R. Miikkulainen, J. Liang, E. Meyerson, A. Rawal, D. Fink, O. Francon, B.

Raju, H. Shahrzad, A. Navruzyan, N. Duffy and others, "Evolving deep

neural networks," in Artificial Intelligence in the Age of Neural Networks and

Brain Computing, Elsevier, 2019, p. 293–312.

[5] K. O. Stanley, J. Clune, J. Lehman and R. Miikkulainen, "Designing neural

networks through neuroevolution," Nature Machine Intelligence, vol. 1, p.

24–35, 2019.

[6] J. D. Schaffer, D. Whitley and L. J. Eshelman, "Combinations of genetic

algorithms and neural networks: A survey of the state of the art," in

Proceedings of COGANN-92: International Workshop on Combinations of

Genetic Algorithms and Neural Networks, 1992.

[7] X. Yao, "Evolving artificial neural networks," Proceedings of the IEEE, vol.

87, p. 1423–1447, 1999.

[8] X. Yao and M. M. Islam, "Evolving artificial neural network ensembles,"

IEEE Computational Intelligence Magazine, vol. 3, pp. 31-42, 2008.

[9] D. H. Hubel and T. N. Wiesel, "Receptive fields, binocular interaction and

functional architecture in the cat's visual cortex," The Journal of Physiology,

vol. 160, p. 106–154, 1962.

[10] C. Blakemore and G. F. Cooper, "Development of the brain depends on the

visual environment," Nature, vol. 228, p. 477–478, 1970.

[11] S. Friess, P. Tiňo, Z. Xu, S. Menzel, B. Sendhoff and X. Yao, "Artificial

Neural Networks as Feature Extractors in Continuous Evolutionary

Optimization [accepted]," in 2021 IEEE International Joint Conference on

Neural Networks (IJCNN), 2021.

[12] S. Friess, P. Tiňo, S. Menzel, B. Sendhoff and X. Yao, "Improving

Evolutionary Optimization through Prediction of Inductive Biases with

Applications to Shape Optimization [In Review]," in 2021 IEEE Symposium

Series on Computational Intelligence (SSCI).

[13] T. Kohonen, "Essentials of the self-organizing map," Neural networks, vol.

37, p. 52–65, 2013.

[14] C. Pang, M. Wang, W. Liu and B. Li, "Learning features for discriminative

behavior analysis of evolutionary algorithms via slow feature analysis," in

Proceedings of the 2016 on Genetic and Evolutionary Computation

Conference Companion, 2016.

[15] L. Liu, C. Pang, W. Liu and B. Li, "Learning to Describe Collective Search

Behavior of Evolutionary Algorithms in Solution Space," in Asia-Pacific

Conference on Simulated Evolution and Learning, 2017.

[16] M. Turkey and R. Poli, "An empirical tool for analysing the collective

behaviour of population-based algorithms," in European Conference on the

Applications of Evolutionary Computation, 2012.

[17] B. Fritzke, "A growing neural gas network learns topologies," in Advances in

Neural Information Processing Systems, 1995.

[18] C. M. Bishop, "Pattern recognition and machine learning," Machine

Learning, vol. 128, 2006.

[19] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,

M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg and others, "Scikit-learn:

Machine learning in Python," Journal of Machine Learning Research, vol.

12, p. 2825–2830, 2011.

[20] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D.

Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright and others,

"SciPy 1.0: fundamental algorithms for scientific computing in Python,"

Nature Methods, vol. 17, p. 261–272, 2020.

[21] Y. Shevchuk, NeuPy: Neural Networks in Python, 2019.

[22] F. Chollet and others, "Keras: The python deep learning library," ascl, p.

ascl–1806, 2018.

[23] M. Abadi, "TensorFlow: learning functions at scale," in Proceedings of the

21st ACM SIGPLAN International Conference on Functional Programming,

2016.

[24] M. Defferrard, X. Bresson and P. Vandergheynst, "Convolutional neural

networks on graphs with fast localized spectral filtering," Advances in Neural

Information Processing Systems, vol. 29, p. 3844–3852, 2016.

[25] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang, Z. Li, S.

Savarese, M. Savva, S. Song, H. Su, J. Xiao, L. Yi and F. Yu, ShapeNet: An

Information-Rich 3D Model Repository, 2015.

[26] F.-A. Fortin, F.-M. D. Rainville, M.-A. Gardner, M. Parizeau and C. Gagné,

"DEAP: Evolutionary Algorithms Made Easy," Journal of Machine Learning

Research, vol. 13, p. 2171–2175, 7 2012.

[27] T. N. Kipf and M. Welling, "Semi-supervised classification with graph

convolutional networks," arXiv preprint arXiv:1609.02907, 2016.

[28] P. Zhang, X. Yao, L. Jia, B. Sendhoff and T. Schnier, "Target shape design

optimization by evolving splines," in 2007 IEEE Congress on Evolutionary

Computation, 2007.

[29] S. K. Singh, R. Singh and B. Kumbhani, "The evolution of radio access

network towards open-ran: challenges and opportunities," in 2020 IEEE

Wireless Communications and Networking Conference Workshops

(WCNCW), 2020.

[30] L. Gavrilovska, V. Rakovic and D. Denkovski, "From Cloud RAN to Open

RAN.," Wirel. Pers. Commun., vol. 113, p. 1523–1539, 2020.

[31] L. Chen, D. Yang, D. Zhang, C. Wang, J. Li and others, "Deep mobile traffic

forecast and complementary base station clustering for C-RAN optimization,"

Journal of Network and Computer Applications, vol. 121, p. 59–69, 2018.

[32] A. Perveen, R. Abozariba, M. Patwary and A. Aneiba, "Dynamic traffic

forecasting and fuzzy-based optimized admission control in federated 5G-

open RAN networks," Neural Computing and Applications, p. 1–19, 2021.

[33] P. R. Lewis, P. Marrow and X. Yao, "Evolutionary market agents and

heterogeneous service providers: Achieving desired resource allocations," in

2009 IEEE Congress on Evolutionary Computation, 2009.

[34] G. Serra, Z. Xu, M. Niepert, C. Lawrence, P. Tino and X. Yao, "Interpreting

Node Embedding with Text-labeled Graphs," in International Joint

Conference on Neural Networks (IJCNN), 2021.

[35] A. Koç, I. Utlu, L. K. Senel and H. M. Ozaktas, "Imparting Interpretability to

Word Embeddings," arXiv preprint arXiv:1807.07279, 2018.

[36] S. Al-Sayouri, E. Gujral, D. Koutra, E. E. Papalexakis and S. S. Lam, "t-pine:

Tensor-based predictable and interpretable node embeddings," Social

Network Analysis and Mining, vol. 10, p. 1–11, 2020.

[37] C. T. Duong, Q. V. H. Nguyen and K. Aberer, "Interpretable node

embeddings with mincut loss," 2019.

[38] T. Hofmann, "Probmap–a probabilistic approach for mapping large document

collections," Intelligent Data Analysis, vol. 4, p. 149–164, 2000.

[39] M. Kusner, Y. Sun, N. Kolkin and K. Weinberger, "From word embeddings

to document distances," in International conference on machine learning,

2015.

[40] I. Lage, E. Chen, J. He, M. Narayanan, B. Kim, S. Gershman and F. Doshi-

Velez, "An evaluation of the human-interpretability of explanation," arXiv

preprint arXiv:1902.00006, 2019.

[41] L. v. d. Maaten and G. Hinton, "Visualizing data using t-SNE," Journal of

machine learning research, vol. 9, p. 2579–2605, 2008.

[42] G. Barlacchi, M. De Nadai, R. Larcher, A. Casella, C. Chitic, G. Torrisi, F.

Antonelli, A. Vespignani, A. Pentland and B. Lepri, "A multi-source dataset

of urban life in the city of Milan and the Province of Trentino," Scientific

data, vol. 2, p. 1–15, 2015.

[43] Z. Du, Y. Yang, Z. Ertem, C. Gao, L. Huang, Q. Huang and Y. Bai, "Inter-

urban mobility via cellular position tracking in the southeast Songliao Basin,

Northeast China," Scientific data, vol. 6, p. 1–6, 2019.

[44] R. T. Rodoshi, T. Kim and W. Choi, "Deep reinforcement learning based

dynamic resource allocation in cloud radio access networks," in 2020

International Conference on Information and Communication Technology

Convergence (ICTC), 2020.

[45] J. Blank and K. Deb, "pymoo: Multi-objective optimization in python," IEEE

Access, vol. 8, p. 89497–89509, 2020.

[46] P. Schmidt and F. Biessmann, "Quantifying Interpretability and Trust in

Machine Learning Systems," arXiv preprint arXiv:1901.08558, 2019.

[47] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado and J. Dean, "Distributed

representations of words and phrases and their compositionality," in

Advances in neural information processing systems, 2013.

[48] X. Yan, J. Guo, Y. Lan and X. Cheng, "A biterm topic model for short texts,"

in Proceedings of the 22nd international conference on World Wide Web,

2013.

[49] X. Chen, Y. Jin, S. Qiang, W. Hu and K. Jiang, "Analyzing and modeling

spatio-temporal dependence of cellular traffic at city scale," in 2015 IEEE

international conference on communications (ICC), 2015.

