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Executive summary 

 
The objective of WP3.4 is to study online learning for proactive dynamic and robust optimisation. 

The status of this work package within the ECOLE project is presented in this report. Our study 

on the investigation of when and how to transfer knowledge in dynamic multi-objective 

opitmisation is first introduced (in Section 2). The existing work in the literature transfers the 

knowledge whenever a change happens no matter what kinds of changes and what types of 

problems are involved. Through computational studies, we found that transfer learning fails on 

problems with fixed Pareto optimal solution sets and under small environmental changes.  In 

addition, we also found that Gaussian kernel function used in the existing transfer learning-based 

method is not always adequate. Therefore, transfer learning should be avoided when dealing with 

problems for which transfer learning fails and other kernel functions should be used when the 

Gaussian kernel is inadequate. Novel strategies and kernel functions are proposed that can be used 

in such cases. The results show that our proposed approach is able to more proactively and more 

quickly adapt to changes soon after they happen, rather than spending a large amount of time 

adapting to changes. In addition to this, the efficiency of transfer learning in dynamic multi-

objective optimisation is also studied (in Section 3). Through computation time analysis of transfer 

learning, we show that the optimisation problem solved within transfer learning (“inner 
optimization problem”) is very time-consuming. In order to enhance the efficiency, two 

alternatives are computationally investigated on a number of dynamic bi- and tri-objective test 

problems. The results show that the greatly enhanced efficiency does not result in huge 

degeneration on the performance of transfer learning. The two proposals in Section 2 and Section 

3 are more robust to changes as they are able to generate good solutions in the first generation right 

after the changes. 

 

 

 

  



 

 

 

 

 

Major Achievements 

 

Major scientific achievements concerning the research invested in this deliverable are presented. 

In particular, short answers to the most important research questions - practical issues - are 

described: 

 

Research Questions Discussion 

 

When does transfer fail in dynamic multi-

objective optimisation? 

 

Through comparing the quality of transferred 

solutions and those without transfer on a set of 

benchmark problems with various environment 

changes, it is found that the transfer fails on 

problems with fixed Pareto optimal solution 

sets and under small environmental changes 

 

Why transfer fails in dynamic multi-

objective optimisation? 

A mathematical proof on transfer learning-

based dynamic multi-objective optimisation 

demonstrates that the Gaussian kernel function 

used in the existing transfer learning-based 

method is not always adequate. 

How efficient is transfer learning in 

dynamic multi-objective optimisation? And 

why does it perform in such way? 

Transfer learning is found to be very time-

consuming as the ‘inner’ optimisation method 

in transfer learning is very costly. 

 

How to improve the efficiency of transfer 

learning in dynamic multi-objective 

optimization? Does such improved 

efficiency negatively affect the quality of 

transferred solutions? 

Two alternative optimisation methods can be 

used to replace the existing ‘inner’ optimisation 

method to improve the efficiency of the 

transfer learning. Experimental results show 

that the greatly enhanced efficiency does not 

result in large deterioration of the quality of 

transfer learning. 

 

 

Is the computation time saved in 

optimisation cancelled out by 

computationally expensive transfer 

learning? 

 

 

Experiments using the computational cost of 

transfer learning to optimise randomly 

generated solutions show that convergence and 

diversity of final solutions generated from the 

randomly generated solutions are significantly 

better than those generated from transferred 

solutions under the same total computational 

budget. Therefore, the high computational cost 

of transfer cancels out the benefits of the 

computational time that it can save in 

optimization. 

 

 

 

 



 

 

 

 

 

1. Introduction 
 

In the Experience-based Computation: Learning to Optimise (ECOLE) project, we aim to tackle 

sophisticated optimisation problems promoted by the emergence of large amounts of product and 

process data which arise from our increasingly dynamic and interconnected world. Naturally, these 

optimisation problems seldom exist in isolation as different problems or the same problem in 

different dynamic states may share some similarity or interconnectivity. Therefore, our program 

utilizes the notion of experience to develop novel and advanced machine learning and optimisation 

techniques to assist the optimisation of engineering and real-world problems. 

 

In Work Package 3 (WP3) of the ECOLE project, the research aim is to develop, analyse and 

evaluate novel machine learning algorithms for more effective and efficient optimisation using 

system engineering and big data analytics. A sub-Work Package of WP3, WP3.4, focuses on using 

knowledge extracted from the optimisation process to forecast changes and reduce the search 

space, leading to novel optimisation algorithms able to find good and timely solutions in uncertain 

environments, under the assistance of advanced machine learning techniques. One of the 

representations of experience in solving dynamic optimisation problems are optimal solutions from 

past problem-solving. 

 

Many real-world engineering and Information and Communications Technology (ICT) [1] [2] 

optimisation problems operate in dynamic and uncertain environments, requiring solutions to be 

updated when changes happen. In addition, these optimisation problems typically involve multiple 

and conflicting objective functions. For example, to support the successful and smooth operation 

of ICT systems, the role of power generating systems [3] is of great importance. Hydro-thermal 

power generation system is popular and widely used in modern society, where both the 

hydroelectric and thermal generating units are utilized to meet the total power demand. The power 

scheduling optimisation problem in this system involves the allocation of power to all concerned 

units, so that the total fuel cost of thermal generation and emission properties are minimized, also 

with the satisfaction of power demand that changes over time. This type of problem is referred to 

as dynamic multi-objective optimisation problems (DMOPs) [4], whose objectives change over 

time [5] [6]. 

 

The key challenge in DMO is how to constantly trace a changing Pareto optimal front (POF) and/or 

Pareto optimal set (POS) before the next environment change [9]. Aiming at this goal, researchers 

have proposed a prediction-based method [9] [10]. This kind of method predicts what the good 

solutions in the next environment are after learning the regularity of the environment changes. In 

most prediction-based approaches, it is implicitly assumed that the evolution of the solutions used 

to train and test the prediction model obeys a fixed independent and identical probability 

distribution. However, this is not always true under dynamic environments in optimisation, since 

the environmental changes may result in different evolution patterns over time. Consequently, the 

prediction model based on the incorrect assumption may cause inaccurate prediction of optimal 

solutions. 

 

Transfer learning [7] is a kind of online learning method that is able to transfer the knowledge 

from a source task to a target task. It does not assume that all data used to train and test the 



 

 

 

 

 

prediction model obeys a fixed probability distribution, being a good candidate for solving DMOPs 

if it can learn and exploit the relationship among different problems. This inherent characteristic 

of transfer learning makes it intuitive to apply transfer learning to explore useful experience that 

have been obtained in one task/problem to solve another related task/problem. The reason is that 

some similar or related problems/tasks may share some common features, which help to transfer 

experience from one problem to help solving another problem. As a result, computational 

resources can be significantly saved when solving similar problems later. As we normally assume 

that the changing problems in DMOPs are related, there are good opportunities for the application 

of transfer learning in dynamic multi-objective optimisation (DMO). However, there has been so 

far only one published paper on DMO, introducing transfer learning-based dynamic multi-

objective optimisation algorithms (Tr-DMOEAs) [8]. 

 

The main idea behind Tr-DMOEA is to transfer solutions in the Pareto front (POF) of the previous 

environment to generate an initial population for the next environment. Experimental studies [8] 

have shown the superiority of Tr-DMOEAs over the state-of-the-art in DMO. However, the results 

also showed that Tr-DMOEA does not always work well, and little is known on why. It is therefore 

important to understand why and when transfer learning does not work well. Only after 

understanding it can we make some improvements regarding transfer learning in DMO. In 

addition, it has been found that the transfer learning process in Tr-DMOEA is computationally 

expensive. Therefore, how to improve the efficiency is another important research focus in online 

learning for proactive dynamic optimisation, where new solutions need to be produced very 

quickly after changes in the environment. 

 

In this report, we present our work on improving the performance of transfer learning in solving 

DMOPs. We propose novel approaches that are able to quickly enhancing the quality of transferred 

solutions after changes as well as increasing the efficiency over Tr-DMOEA. Section 2 first 

presents our in depth analysis of when and how to transfer knowledge in DMO and proposes to 

transfer when environment changes are smaller and problems have fixed POS, and replace the 

existing Gaussian kernel with a linear one. Section 3 presents our proposed approach to efficiently 

transfer knowledge from the past to the present environment state, enhancing solution quality. 

 

2. When and How to Transfer Knowledge in Dynamic Multi-objective 

Optimisation 
 

This section aims to answer two research questions when and how to transfer knowledge in 

dynamic multi-objective optimisation. The rest of this section is organized as follows: Section 2.1 

answers the question when transfer learning works/fails in DMO and proposes to avoid transfer 

learning when it fails. Section 2.2 presents how transfer learning works in DMO and propose to 

replace the Gaussian kernel function with a linear one. Section 2.3 shows experimental studies of 

the proposal and comparison with the existing methods. Section 2.4 summarises the work of this 

section. 

 

The following publication in the ECOLE is contributing to this section: 

 



 

 

 

 

 

Ruan, G., Minku, L. L., Menzel, S., Sendhoff, B., & Yao, X. (2019, December). When and how 

to transfer knowledge in dynamic multi-objective optimisation. In 2019 IEEE Symposium Series 

on Computational Intelligence (SSCI) (pp. 2034-2041). IEEE. 

 

Generally, whenever a new environment change happens, there is a population that has already 

been optimised to the previous environment. To check whether transfer learning works, we 

compare the quality of the following solutions on the new environment: (1) transferred solutions 

and (2) solutions copied from the previously optimised population. For transfer learning to be 

considered as successful, (1) should be of at least similar (and ideally better) quality than (2) on 

the new environment. Therefore, this section designs an experiment to compare the quality of the 

solutions (1) and (2). 

 

Experimental setups of the experiments in this section: 

In this report, the IEEE CEC 2015 Benchmark problems [11] are selected as the test problems, 

which have 12 bi- and tri-objective problems with different features. Inverted Generational 

Distance (IGD) [12] is used to compare the performance of two solutions sets. IGD can measure 

the diversity and convergence of a solution set found by an algorithm, so it can give us a 

comprehensive understanding about the performance of compared algorithms. MIGD [13] is a 

modified version of IGD, which is the average IGD values in all changes. The smaller the MIGD 

the better the algorithm. The Wilcoxon rank sum test [14] with the significance level 0.05 is carried 

out to indicate significance between results obtained by two compared algorithms. MIGD of two 

compared algorithms for each problem with one parameter is regarded as one observation for the 

test. 

 

Parameter Settings: the population size is set as 200, as in previous work [8]. For the parameters 

of these test problems, there are 20 changes. Therefore, the MIGD is the average of IGDs of 

populations under 20 changes in the following tables. In addition, in these tables, the better values 

obtained by the algorithm are highlighted in bold face. In order to study the effectiveness of Tr-

DMOEAs in different dynamics, there are three dynamics with different severity of change (i.e., 

t
n = 10, 1 and 20). They represent the environment changes are medium, large and small, 

respectively. Within each change, the population is forced to run 50 generations (i.e., t
  = 50), 

which enables the population to converge. This corresponds to the parameter settings of C4, C6 

and C8 in Table 1. At the beginning of the algorithm, the population iterates for 50 generations, 

which also enables the population to converge. 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

Table 1: Configurations of benchmark function parameters. t
n , t  and T

  are the severity of 

change, frequency of change and maximum number of iterations, respectively. 

 
 

2.1 When Does Transfer Learning Work/Fail in Dynamic Multi-objective Optimisation? 

 

This section analyzes when transfer learning works or fails in DMO, such that some potential 

improvements can be put forward. 

2.1.1 Computational Investigation into Transfer Learning in DMO 

Generally, whenever a new environment change happens, there is a population that has already 

been optimised to the previous environment. To check whether transfer learning works, we 

compare the quality of the following solutions on the new environment: (1) transferred solutions 

and (2) solutions copied from the previously optimised population. For transfer learning to be 

considered as successful, (1) should be of at least similar (and ideally better) quality than (2) on 

the new environment. Therefore, an experiment is conducted to compare Tr-RMMEDA and 

RMMEDA where RMMEDA [15] is a regularity model-based multi-objective estimation of 

distribution algorithm. It is able to make the population converge quickly before the next change, 

avoiding the cases that unconverged solutions affect the results. The state-of-the-art Tr-DMOEA  

[8] is adopted. 

 

In DMO, the key point is to find the optimal solutions as soon as possible before next change. In 

this case, the better the generated solutions after each change, the better the Tr-DMOEA. 

Therefore, if transferred solutions are better than copied solutions from the previous environment, 

we consider that transfer learning works well. In the contrary, if transferred solutions are worse 

than copied solutions, transfer learning fails. 

 

Here, MIGD values for Tr-RMMEDA and RMMEDA are compared. After each environmental 

change, RMMEDA gets an initial population found in last generation of the previous environment, 

while Tr-RMMEDA obtains an initial population through transfer learning. These two initial 

populations are evaluated in the new environment and then used to calculate the IGD values. 

MIGD values for Tr-RMMEDA and RMMEDA are the average of IGDs under 20 environments. 

The comparison results are shown in Table 2, in which ‘Tr’. and ‘Copy’ mean MIGD values for 

Tr-RMMEDA and RMMEDA, respectively. It can be observed from the table that transferred  



 

 

 

 

 

 

 

Table 2:                                                                 Table 3: 

MIGD for Tr-RMMEDA and RMMEDA      MIGD of combined and transferred solutions 

 
 

solutions are all worse than those from the previous environment on problems HE2, HE7 and HE9, 

no matter what kinds of changes are present in these benchmark problems. All HE problems have 

fixed POS. Therefore, it can be concluded that transfer learning fails on problems with fixed POS. 

For other problems, transferred solutions are better than those copied from the previous 

environment when t
n = 1 (C6). Regarding other two kinds of changes (C4 and C8), cases that 

transferred solutions are better for C8 are more than those for C4. As a result, transfer learning 

works better when the environment change is smaller. To sum up, transfer learning works on 

problems with small changes and with fixed POS. In other words, transfer learning can make the 

population more proactively adapt to changes more quickly soon after they happen on problems 

with small changes and with fixed POS. 

 

2.1.2 Avoiding Transfer on Problems with Fixed POS And Small Environmental Changes 

 

Generally, it is unlikely that the error of transferring good solutions from a problem to another 

problem would be zero. Even if the existing Tr-DMOEA is improved, it is unlikely that the error 

would become zero. As the copied solutions from the previous environment are very good 

solutions for situations with small changes or problems with fixed POS, it would be very difficult 

for transferred solutions to beat the copied ones. Therefore, the most intuitive idea to prevent 

negative results obtained by transfer learning in such cases would be to prevent using transferred 

solutions. It has been computationally shown that transfer learning fails on problems with small 

changes and fixed POS in DMO. In order to improve the performance of transfer learning in DMO, 

the most intuitive idea is to avoid transfer learning when it fails. In addition, when transfer learning 

works well, it should be definitely used. However, it is impossible for algorithms to foresee which 

problem has fixed POS and when the environmental changes are small. To overcome this problem, 

after each change, transferred solutions and copied ones from the previous environment are firstly 

combined together. After that, nondominated sort and crowding distance in NSGA-II [16] are used 

to rank the combined solutions on the new environment. Lastly, solutions with the population size 

are selected from the combined population as the initial population. 

 

 



 

 

 

 

 

2.1.3 Experimental Studies of the Proposed Strategy 

 

This section analyzes the effectiveness of the strategy proposed in section 2.1.2 through 

experiments. Here, we compare the proposed strategy against the original transfer learning 

approach, to check whether it can improve the MIGD values of the initial populations after the 

changes.  

 

The specific comparison results of transferred to combined solutions are shown in Table 3. The 

better value that the solution set has is highlighted in bold face. Combined solutions are termed as 

‘Comb.’. It is clear that combined solutions are better than transferred ones (Tr.) on almost all test 

problems under different environments. The Wilcoxon rank sum test result with h = 1 and p = 

1.2532e - 4 shows that the combined solutions are significantly better than transferred solutions in 

the first generation after change. In other words, the combined solutions can adapt to changes more 

proactively and quickly soon after they happen more than transferred solutions, which further 

proves the robustness of combined solutions. 

 

 

2.2 How Does Transfer Learning Work in Dynamic Multi-objective Optimisation? 

 

2.2.1 Mathematical Proof that Gaussian Kernels Are Not Ideal 

 

In this section, we briefly introduce the foundations of Tr-DMOEA first. Then the weakness of 

using the Gaussian kernel will be highlighted. The detailed process of Tr-DMOEA can be found 

in [8]. 

 

In Domain Adaption Learning (DAL) [17], a transfer learning method, it is assumed that a 

transformation should be found to a latent space where the difference between the distributions of 

source and target domain is minimized. Once this transformation is found, it can act as a bridge to 

connect the source domain and the target domain. Then solutions that have been optimised in one 

domain can be transferred to be good solutions in another domain through this bridge. 

 

The distance between the distributions of the source and target domain can be calculated through 

the Maximum Mean Discrepancy (MMD) [18], which evaluates the distance between two 

distributions in the Reproducing Kernel Hilbert Space (RKHS). Let p  and q  be two Borel 

probability distributions defined on a domain X . 1{ ,..., }=
m

FS Fs Fs  and 1{ ,..., }
m

FT Ft Ft= are 

observations drawn from p  and q . Let F be a class of functions →:f X R . f can be written as 

( ) ( ),f x x f=  in a RKHS, where ( ) :x →X H . The estimated MMD in RKHS can be 

calculated as: 

 

2

1 1

1 1
( , , ) : ( ) ( )

m n

i i

i i

MMD p q Fs Ft
m n

 
= =

= − 
H

F   (1) 



 

 

 

 

 

In Tr-DMOEA, the distribution of the source and target domains in consideration is the distribution 

of the objective vectors of source and target solutions. Therefore, in Tr-DMOEA, FS  and FT  are 

the objective vectors of randomly generated solutions in the source environment s  (i.e., the 

problem before a change) and target environment t  (i.e., the problem after a change), respectively. 

The function   is defined as ( ) ( )T
F W F = , where W is a transformation matrix which maps 

the objective vector into the latent space, and ( )F  is defined as follows, where ( , )    is a kernel 

function [19]:            

    1 1( ) [ ( , ),..., ( , ), ( , ),..., ( , )]T

m nF Fs F Fs F Ft F Ft F    =                       (2) 

Once W is found, Tr-DMOEA will initialize the population in the target environment with 

solutions whose objective vectors are close to that of any good solution from the source 

environment in the latent space. For that, it needs to find solutions k
t whose objective vector is 

close to that of a solution ls  from POF of the problem in the source environment ( sPOF ), i.e., 

whose ( ) ( )l kFs Ft −  is minimal. We can expand the distance as follows: 

              ( ) ( ) ( ) ( ) ( ) ( )T T T

l k l k l kFs Ft W Fs W Ft W Fs Ft     − = − = −                      (3) 

                   ( ) ( )
2

2

1 1 1

( ) ( ) ( , ) ( , )
d d m n

j l j k ji i l i k

j j i

Fs Ft W F Fs F Ft   
+

= = =

 = − =  − 


                            (4) 

in which d  is the dimension of the latent space; F Fs=  when [1, ]i m  and F Ft=  when 

[ 1, ]i m m n + + . 

 

From the above we can see that the more similar ( , )i lF Fs  and ( , )i kF Ft  are, the smaller the 

distance in the latent space. In the existing Tr-DMOEA, the used kernel function is the Gaussian 

kernel:                                        
( ) ( )

( , )
T

k kF Ft F Ft

kF Ft e − − −=             (5) 

Here, we consider bi-objective problems: 1 2( , )l l lFs Fs Fs= ; 1 2( , )k k kFt Ft Ft= ; 
1 2( , )F f f= ; 

therefore:                  

    
1 1 2 2 2 2 1 1 2 2 2 2( ) ( ) ( ) ( )

( , ) ( , ) l i l i k i k iFs F Fs F Ft F Ft F

i l i kF Fs F Ft e e  − − − − − − − −− = −                 (6) 

Then, the difference between ( , )
i l

F Fs  and ( , )
i k

F Ft  is the difference between their exponent: 

                  ( ) ( )1 1 2 2 2 2 1 1 2 2 2 2( ) ( ) ( ) ( )
l i l i k i k i

Fs F Fs F Ft F Ft F− + − − − + −                                   (7) 

           ( ) ( )1 1 2 1 1 2 2 2 2 2 2 2( ) ( ) ( ) ( )
l i k i l i k i

Fs F Ft F Fs F Ft F= − − − + − − −                   (8) 

To make eq. (7) minimal, both terms of eq (8) should be minimal. To simplify the analysis, only 

the first term is considered here. When the first term is equal to 0, it can be re-written as follows: 

 1 1 1 1 1 1 1 1 1 1 1 1   l i k i l i k i l i i kFs F Ft F Fs F Ft F Fs F F Ft− = −  − = − − = −OR                       (9) 

Therefore, solutions for 
1

kFt  are (
2

kFt  is the similar as 
1

kFt ): 

                                         
1 1 1 1 1 2k l k i lFt Fs Ft F Fs= = −OR                                                 (10) 



 

 

 

 

 

Therefore, objective values of found solutions are close to either those of the solution lFs  from 

sPOF or twice over those of randomly generated solutions ( i
F ). The original intention of Tr-

DMOEA was to find a solution in the target environment whose objective vector 1

kFt  k is similar 

to that of a s
POF  solution in the latent space (i.e., the first solution in Eq. (10)). However, there is 

no reason to believe that a solution in the target domain whose objective vector is similar to a 

random solution from the source domain in the latent space (i.e., the second solution in Eq. (10)) 

is going to be a good solution.  In this case, the Gaussian kernel function is not the ideal in present 

version of Tr-DMOEA. 

 

2.2.2 Replacing Gaussian Kernel with Linear Kernel 

 

After reviewing present common kernel functions, we find that the linear kernel functions [20] 

[21] [22] overcome the problem presented by the Gaussian kernel function explained in section 

2.2.1. In the following, the details why the linear kernel overcomes this problem are explained. 

Here, the simplest linear kernel is used: ( , ) T

k kF Ft F Ft = . Therefore,  

                1 1 1 2 2 2( , ) ( , ) ( ) ( )i l i k i l k i l kF Fs F Ft F Fs Ft F Fs Ft − = − + −                              (11) 

It can be seen from eq (4) when the distance is minimal, ( , ) ( , )
i l i k

F Fs F Ft − would be close to 

0. In this case, 1 1

k lFt Fs=  and 2 2

k lFt Fs= . Therefore, the searched solution 1 2( , )k k kFt Ft Ft= will be 

close to the solution 1 2( , )l l lFs Fs Fs= in last s
POF , being a potentially good solution to initialize 

the population in the target domain. 

 

2.2.3 Experimental Evaluation of Different Kernels 

 

In section 2.2.2, it has been mathematically proved that the linear kernel function overcomes the 

problem of the Gaussian kernel. In order to verify the effectiveness of it from the perspective of 

experiment, specific experiment will be conducted. In this experiment, two algorithms will be 

compared. One is Tr-DMOEA with the Gaussian kernel function. Another is Tr-DMOEA with the 

linear kernel function. 

 

The comparison results of the Gaussian and linear kernel based Tr-DMOEA are shown in Table 

4. In the Table 4, ‘Gauss.’ and ‘Lin.’ represent the Gaussian and linear kernel based Tr-DMOEA, 

respectively. It can be seen from the table that when change is small (C8) and medium (C4), Tr-

DMOEA with linear kernel function is better than that with Gaussian kernel function except HE9 

problem. Plus, when changes are large (C6), there are only 4 out of 12 cases that linear kernel-

based Tr-DMOEA is worse than Gaussian kernel-based Tr-DMOEA. As a whole, the linear kernel 

greatly improves the performance of solution quality after change in the first generation, compared 

with the Gaussian kernel one. The Wilcoxon rank sum test result with h = 1 and p = 0.0132 shows 

that transferred solutions with the linear kernel are significantly better than those with the Gaussian 

one in the first generation after change. In other words, transferred solutions with the linear kernel 

can adapt to changes more proactively and quickly soon after they happen more than those with 



 

 

 

 

 

the Gaussian one, which further proves the robustness of transferred solutions with the linear 

kernel. 

Table 4:                                                                 Table 5: 

MIGD for Gaussian kernel-based and linear           MIGD for the original Tr-RMMEDA 

kernel-based Tr-RMMEDA                         and the improved Tr-RMMEDA 

 
 

2.3 Improved Transfer Learning in DMO 

 

It has been mathematically and experimentally shown that when and how to transfer is vitally 

important in DOM. Transfer learning fails on problems with stationary POS and when changes are 

small. The kernel function also matters in Tr-DMOEA, which contributes the idea of replacing the 

Gaussian kernel with a linear one. Therefore, in order to make improvements on present Tr-

DMOEA, this section proposes novel method for Tr-DMOEA. 

 

Algorithm 1. Responding strategy based on improved transfer learning. (The highlighted 

text corresponds to the differences between the original and improved Tr-DMOEA.) 

Input: Two DMOPs ( )
s

F   and ( )
t

F   in the source and target environments; s
POS  and s

POF  

of the DMOP in the source environment; linear kernel function  . 

Output: The responding initial population init
P . 

1. Initialization; 

2. Randomly sample two solution sets in the search space of problems ( )
s

F   and ( )
t

F  , as s
X and t

X ; 

3. Evaluate sX and tX  on their own objective functions to get their objective vectors sF  and tF ; 

4. Use s
F  and t

F  as well as the linear kernel function to get the transformation matrix W [8]; 

5. Determine target domain solutions TrX  whose fitness is similar to that of the POFs solutions in 

the latent space. The linear kernel function is used here to map solutions to the latent space; 

6. Calculate the objective values of Tr
X  and s

POS  on problem ( )
t

F  ; 

7. Sort on the combined populations TrX  and s
POS  through nondominated sort and crowding 

distance; 

8. Select the top N solutions from the combined population as init
P , where N is the population size; 

9. Return initP . 



 

 

 

 

 

 

2.3.1 Proposed Method to Generate An Initial Population 

 

The main idea in a DMOEA is to generate an initial population such that the population can quickly 

reach the new optimum after a change. Therefore, in Tr-DMOEA, an initial population is produced 

through transferring good solutions from the previous environment. In this section, we present a 

method that makes use of the strategies proposed in sections 2.1.2 and 2.2.2 to improve Tr-

DMOEA’s solutions in the initial population after the changes. Firstly, in the process of transfer 

learning, the Gaussian kernel will be replaced with a linear one, as described in section 2.2.2. 

Secondly, considering that it is difficult to judge when changes are small and which problem has 

fixed POS for a DMOEA, transferred solutions and solutions copied from the previous 

environment are combined together, as described in section 2.1.2. The initial population is selected 

from the combined populations and then regarded as the initial population for the problem in next 

environment. The detailed procedures of improved Tr-DMOEA are shown in Algorithm 1. The 

differences with regarding to the original Tr-DMOEA are highlighted in the pseudocode. This 

algorithm can be embedded into any population based evolutionary algorithms. 

 

2.3.2 Evaluation through Computational Studies 

 

In order to evaluate the effectiveness of the proposed improved Tr-DMOEA, computational studies 

are conducted in this section. Firstly, we compare the performance of initial population produced 

by the original transfer learning and improved one in DMO following a similar procedure to that 

used in Sections 2.1.3 and 2.2.3. Then, the performance of populations obtained by several 

compared methods after optimisation is stated. The reason why we are now also comparing the 

results after optimisation is to verify whether the improved Tr-DMOEA helps to solve DMOPs, 

compared with other state-of-the-arts. 

 

1) Solutions Quality Comparison in the First Generation: 

Similar to previous experiments, comparison results of solutions after the change produced by the 

original and improved Tr-RMMEDA are shown in Table 5. It can be observed from the table that 

results of the improved Tr-RMMEDA are better than the original one on most of investigated 

problems. The Wilcoxon rank sum test result with h = 1 and p = 0.0269 shows that the transferred 

solutions through the improved Tr-DMOEA are significantly better than those through the original 

Tr-DMOEA in the first generation after change. In other words, transferred solutions through the 

improved Tr-DMOEA can adapt to changes more proactively and quickly soon after they happen 

more than those through the original Tr-DMOEA, which further proves the robustness of 

transferred solutions through the improved Tr-DMOEA. 

 

2) Solutions Quality Comparison after Optimisation: Here, the experiment is conducted to verify 

the effect of the proposed method at the final generation after the changes. It should be noted that 

there are three investigated population-based algorithms, the fast and elitist multi-objective genetic 

algorithm (NSGA-II) [4], multi-objective particle swarm optimisation algorithm (MOPSO) [23] 

and regularity model-based multi-objective estimation of distribution algorithm (RMMEDA) [15], 



 

 

 

 

 

which are regarded as the optimisation algorithms. The DMOEAs with the original transfer 

learning are termed as Tr-DMOEAs. Similarly, DMOEAs with proposed method are written as 

ImTr-DMOEAs. 

 

For each ImTr-DMOEA, there are three compared DMOEAs: the original Tr-DMOEA, the static 

MOEA (COPY-DMOEA) and one with random response strategy (RND-DMOEA). The reason 

for using three different optimisation algorithms is to test the performance sensitivity of transfer 

learning-based method in three different type of algorithms. Parameters of different algorithms are 

set as the same in their original papers [8] [16] [23]. MIGD results of four compared DMOEAs 

with RMMEDA on all test problems are shown in Tables 6. Due to space limitations, the table 

showing MIGD results of four compared DMOEAs with MOPSO is omitted here and put in a 

supplementary material, which can be found in http://www.escience.cn/people/gruan/index.html. 

The results obtained by four DMOEAs with MOPSO are similar to those with RMMEDA. 

Additionally, in order to show the significant superiority of the proposed method to other 

algorithms, Friedman and Nemenyi statistical tests are conducted on all benchmark problems 

regarding MIGD of 12 algorithms (4 responding strategies with 3 EAs). The MIGD value obtained 

by a given algorithm on one problem with one parameter setting is regarded as an observation to 

compose that algorithm’s group for the test, following Demsar’s guidelines [14]. Therefore, there 

are 96 (12 problems and 8 parameters) observations in each group. Friedman detects significant 

differences in average accuracy with a p-value of 1.3726e-55. The Nemenyi post tests are shown 

in Figure 1, and are discussed over the next sub-sections. According to the test, average accuracy 

of the ImTr-RMMEDA is significantly better than that of the other approaches except Tr-

RMMEDA and ImTr-MOPSO. 

 

a) Impact of EAs on Different DMOEAs: Some DMOEAs with different EAs have different 

performance, while others have the similar performance, which can be seen from Figure 1. As a 

whole, MIGD values that RMMEDA obtains are better than those from MOPSO in most cases 

regarding all problems and different dynamics, while NSGA-II gets the worst MIGD results. For 

example, for problem FDA4 with the parameter setting C2, each DMOEA with RMMEDA has 

better MIGD than that of NSGA-II, no matter what the MIGD order of different DMOEAs with 

the same EA. This shows that RMMEDA are more suitable to solve these DMOPs than other two 

EAs. The above observations are confirmed by the Friedman and Nemenyi tests in Figure 1. When 

transferred solutions are not converged, solutions with Gaussian kernel-based transfer have better 

diversity, enabling better results to be achieved after the change than when using linear kernel. 

That is why the improved Tr-NSGA-II is worse than the original Tr-NSGA-II. 

 

 



 

 

 

 

 

Figure 1: Friedman ranking among all DMOEAs from left to right, 4 responding 

strategies with respect to 3 EAs including RMMEDA, NSGA-II and MOPSO 

(referred as RM, NS and MO for simplicity). Any pair of approaches whose 

distance between them is larger than CD are considered to be different. 

 

Table 6: MIGD values of four DMOEAs with the optimisation algorithm RMMEDA on all 

benchmark problems 

 
For each problem with each parameter, all algorithms get optimised populations by RMMEDA in the last 

generation of each change. MIGD is the average of IGDs of these populations with one run under 20 changes. 

The best values that the algorithm obtains are highlighted in bold face. 

 

b) Performance of DMOEAs on Different Benchmarks: 

In general, it is clear from Table 6 that transfer learning based DMOEAs are all better than static 

MOEAs and DMOEAs with random initial population. This shows that transferred solutions can 

maintain the balance of convergence and diversity to some degree, compared with static MOEAs 

and random DMOEAs. When comparing the performance of Tr-DMOEAs and ImTr-DMOEAs, 

ImTr-DMOEAs are basically better than Tr-DMOEAs. Specifically, for HEs problems, 

ImTr-DMOEAs are all better than Tr-DMOEAs except HE2 and HE7 when the EA is NSGA-II. 

This shows that transfer learning based DMOEA with the linear kernel and combined solutions is 

more capable of solving DMOPs with fixed POS. Regarding tri-objective optimisation problems, 

ImTrDMOEAs performs better than Tr-DMOEAs on FDA5iso and FDA5dec while worse than 

Tr-DMOEAs on FDA4 and FDA5. This implies that the improved Tr-DMOEAs can solve tri-

objective problems with complex property such as isolated or deceptive POF. For DIMP2 whose 

decision variable has its own rate of change, it is difficult for any algorithm to solve, compared 

with other problems. The original Tr-DMOEA shows its superiority on this problem. In terms of 

other bi-objective problems, the Tr-DMOEAs with linear kernel function are all superior to those 

with the Gaussian kernel. This demonstrates that the improved Tr-DMOEA is better capable of 

solving tri-objective problems except the one with very complicated features like DIMP2, for 

which all algorithms struggle. 
 



 

 

 

 

 

c) Influence of Dynamics on Tr-DMOEAs: Overall, it is clear from Table 6 that MIGD values 

obtained by all DMOEAs become better with the increase of changing frequency, when they are 

under same changing severity. The reason is obvious, which is that the more the iterations within 

each change, the better the performance. Additionally, no matter what kind of changing sizes are, 

two kinds of Tr-DMOEAs are all better than the random and static ones. The only difference 

between the original and the improved Tr-DMOEAs is their performance with different EAs, 

which has been introduced in section 2.3.2-2) a. Therefore, it can be concluded that the improved 

Tr-DMOEA can address most investigated problems no matter what kinds of dynamics are, as 

long as solutions before the change have been converged. 

 

2.4 Summary 

 

To summarise, this section studies transfer learning in DMO, analyzing when and how transfer 

learning works in DMO. It has been computationally observed that transfer learning works poorly 

on problems with fixed POS and when environmental changes are small. It has also been shown 

that the Gaussian kernel function in the existing method Tr-DMOEA [6] is inadequate for DMO. 

Based on these two observations, a new method has been proposed regarding avoiding transfer 

learning when it fails and replacing the Gaussian kernel with a linear one. Experimental results 

have shown that our proposed method is effective in solving DMOPs, compared with other state-

of-the-art algorithms. In other words, the proposed method can adapt to changes more proactively 

and quickly soon after they happen, rather than spending a lot of time adapting to changes, which 

further proves the robustness of the proposed method. 

 

3. Improve the Efficiency of Knowledge Transfer in Dynamic Multi-objective 

Optimisation 
 

This section investigates how to improve the efficiency of knowledge transfer in dynamic multi-

objective optimisation and whether the improved efficiency affects the performance of knowledge 

transfer. The rest of this section is organized as follows: Section 3.1 gives the time complexity of 

Tr-DMOEA and the computation time analysis of each component in Tr-DMOEA. Section 3.2 

aims to investigate whether it is worthy to consume such long time taken by the transfer to use 

transfer learning in DMO. Section 3.3 studies whether the efficiency of transfer learning in DMO 

could be improved and whether the solution quality could be affected by the improved efficiency 

if the efficiency could be improved. Section 3.4 summarises the work of this section. 

 

The following publication in the ECOLE is contributing to this section: 

 

Ruan, G., Minku, L. L., Menzel, S., Sendhoff, B., & Yao, X. (2020, July). Computational Study 

on Effectiveness of Knowledge Transfer in Dynamic Multi-objective Optimisation. In 2020 IEEE 

Congress on Evolutionary Computation (CEC) (pp. 1-8). IEEE. (Best student paper finalist). 

 

 



 

 

 

 

 

3.1 Efficiency of Transfer Learning in DMO 

 

The time complexity of TCA and primal dual interior point has been analyzed in [8]. The major 

time cost of TCA is spent on the eigenvalue decomposition. It costs 
2( ( ) )O d m n+  time when d  

nonzero eigenvectors are to be extracted, where m  and n  are the numbers of the solutions which 

are generated in the search space of source and target problems. For the primal dual interior point 

method, suppose the constraint matrix A has n  rows and m columns, and n m , it has ( )O mL  

iterations and 
3( )O m L  arithmetic operations, where L  is the total number of bits of the input. It is 

clear that the time complexity of the interior point is larger than that of TCA.  

 

In order to verify the cost of TCA and interior point method from the perspective of computation 

time, an initial experiment is conducted regarding how much computation time these two parts 

consume in a single run. The experimental design is as follows: RMMEDA [15] is selected as the 

optimisation algorithm. Here, only one problem dMOP2 is used as the test problem as it is only 

used to reflect the proportion of computation time of each component in Tr-DMOEA. For the TCA 

parameters, the Gaussian kernel function is set as the default value and the expected dimensionality 

is set to be 20. The value of µ is set as 0.5. Computation time of each function of the whole 

algorithm will be recorded by the Profile environment of MATLAB 2018b.  Computation time of 

each part of the Tr-RMMEDA is recorded and presented in Table 7. It is clear from the table that 

the interior point method consumes the most computation time, which confirms the complexity 

analysis of TCA and interior point in previous one section. 

 

Table 7: Computation time of each process of Tr-RMMEDA with one run, one change             

and one parameter on problem DMOP2. 

 
 

 

3.2 Solutions Quality after Optimisation for Which Transfer Learning Cost Is Used 

 

It has been experimentally shown that the existing Tr-DMOEA is extremely time-consuming. It is 

still unclear whether it is worthy to consume such long time to use transfer learning in DMO. This 

section is presented to explore this. 

 

3.2.1 Computation Time of Transfer Learning Used for Optimisation 

 

In order to figure out whether it is worthwhile to use transfer learning in DMO, this section designs 

an experiment to verify it. The main idea behind this experiment is to use the computation time of 

transfer learning to optimise randomly generated solutions. Whenever there is a change, transfer 



 

 

 

 

 

leaning is used to get the transferred initial population, while another initial population is randomly 

generated in the search space. The costs of transfer learning and random generation are recorded, 

termed as tr
C  and ran

C . The cost is the running time determined based on the stopwatch timer in 

Matlab, where the Matlab command ‘tic’ and ‘toc’ starts and ends the timer, respectively. Then, 

the cost tr ranC C−  is used to optimise the randomly generated population. During the optimisation, 

both transferred population and random one will iterate for t
  generations to get two optimised 

solutions. 

 

 

3.2.2 Quality Comparison of Transferred And Random Solutions with Same Cost Budget 

 

The specific experimental design has been introduced in the previous section. In this section we 

compare the quality of optimised solutions with transfer and optimised solutions from random 

generation, both of which are obtained under the same computation time budget. 

 

a) Solution Quality Comparison in the First Generation: Here, we compare the quality of 

transferred solutions and those solutions which are optimised using the transfer learning 

computation time. MIGD is the average of these 20 IGD values under 20 changes for two solution 

sets. The mean and standard deviation of MIGD values are presented in Table 8, in which 

‘Transfer’ and ‘Random’ refer to the MIGD values of these two solution sets. The better values 

that the method gets are highlighted in bold face. In order to indicate the significance between 

transferred solutions and optimised solutions using transfer learning computation time, the 

Wilcoxon rank sum test with the significance level 0.05 is carried out across problem instances, as 

recommended by Demsar [14]. MIGD value of ‘Transfer’ and ‘Random’ for each problem with 

one parameter is regarded as one observation data for the test. The result with h = 1 and p= 1.2624e-

08 shows that random solutions optimised using transfer learning computation time are 

significantly better than transferred solutions. In other words, random solutions optimised using 

transfer learning computation time can adapt to changes more proactively and quickly soon after 

they happen more than transferred solutions, which further proves the robustness of random 

solutions optimised using transfer learning computation time. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

Table 8:  Mean and standard deviations of MIGD values of transferred solutions and those 

solutions optimised using the computation time of transfer learning after being randomly 

generated 

 
 

b) Solution Quality Comparison after Optimisation: Here, we compare the quality of optimised 

solutions with transfer learning and those solutions which originate from random generation. The 

mean and standard deviation of MIGD values are presented in Table 9, in which ‘Transfer’ and 

‘Random’ refer to the MIGD values of these two solution sets. The better values that the method 

gets are highlighted in bold face.  

 

Table 9:  Mean and standard deviations of MIGD values of optimised solutions with transfer 

learning and random solutions that first iterate for some generation which consumes the same 

computation time as transfer learning, and then are optimised the same generation as those with 

transfer 

 
 



 

 

 

 

 

In order to indicate the significance between optimised solutions with transfer learning and those 

from random generation, the Wilcoxon rank sum test with the significance level 0.05 is carried 

out. MIGD value of ‘Transfer’ and ‘Random’ for each problem with one parameter is regarded as 

one observation data for the test. The result with h = 1 and p = 0.0085 shows that solutions which 

originates from random generation are significantly better than optimised solutions with transfer 

learning in the last generation of optimisation. It can be concluded that under the same computation 

time budget, random solution after optimisation will obtain better results than those from transfer 

learning, no matter whether the optimisation process is conducted on transferred solutions or not. 

In the original paper, Tr-DMOEA is better than the algorithm with random solutions. The 

difference is that in the original paper, the same evaluation times and generations are given to these 

two algorithms, while the same computation time budget is given in this paper. This shows that it 

is not worth to consume such long time on transfer learning, while achieving worse results than 

consuming these computation time on optimising. In other words, it vanishes the original purpose 

of using transfer learning in DMO, reducing the efforts of optimisation. On the other side, when 

comparing Tables 8 and 9, it is clear that the improvement of transferred solutions are more than 

that of optimised solution from randomization after t
  generations’ optimisation. In addition, as t


increases, the quality of transferred solutions becomes better while those from randomization 

remain unchanged. These two observations show that transferred solutions are far from the 

optimum of problems, while solutions from randomization have already been nearly Pareto 

optimal. 
 

3.3 Computational Analysis of Three Tr-DMOEA Variants 

 

It has been experimentally shown that the existing Tr-DMOEA is extremely time-consuming and 

randomly generated solutions after being optimised using transfer learning time are greatly better 

than transferred ones. It is unclear whether the efficiency could be improved and whether the 

solution quality could be affected by the improved efficiency if the efficiency could be improved. 

 

3.3.1 Computation Time Comparison of Three Tr-DMOEA Variants 

 

Given that the computation time of solving the inner optimisation problem in Tr-DMOEA is very 

large, it is unclear whether the efficiency of solving the inner problem (equation (3)) could be 

enhanced. To explore this, other two popular optimisation methods are used here, which are the 

active set [24] and sequential quadratic programming (sqp) [24] methods. We have conducted a 

set of experiments to validate the efficiency and effectiveness of these three Tr-DMOEA variants. 

 

Here, we give a brief description of active set and sqp method: 

1). The active set method [24] considers an optimisation problem with n  constraints 

1( ) 0,..., ( ) 0
n

g x g x  . For a point x  in the feasible region, a constraint is called active at x  if 

( ) 0
i

g x =  and inactive if ( ) 0
i

g x  . The procedures for the active set are as follows: solve the 

equality problem defined by the active set (approximately) with a solution *x ; compute the 

Lagrange multipliers of the active set; remove a subset of the constraints with negative Lagrange 



 

 

 

 

 

multipliers; search for the new boundary based on *x  along the feasible region boundary formed 

by the active set and add the constraint related to the new boundary to the approximated active set. 

Iterate these procedures until the optima is found. 

2). Sqp [24] is an iterative method for constrained nonlinear optimisation. At each iteration, a basic 

sequential quadratic programming algorithm defines an appropriate search direction as a solution 

to the quadratic programming subproblem. Note that all three optimisation methods (interior point, 

sqp and active set) used in this paper are from the optimisation toolbox of MATLAB 2018b. The 

specific implementation of these three methods and the difference between the sqp and the active-

set algorithms can be found in MATLAB’s online documents.  

 

The computation time of three different optimisation methods in these three Tr-DMOEA variants 

is only recorded when solving the inner problem (equation (3)), for all test problems with all 

parameter setting. The specific computation time comparisons of these three optimisation methods 

in DMO, the comparison results of computation time of three Tr-DMOEA variants are shown in 

Table 10. Due to space limitations, only results of C5 and C6 are presented. Results of other 

parameter settings are similar to those of C5 and C6. It is clear from Table 10 that for all test 

problems with those parameter settings, the interior point method consumes the most time among 

the three compared methods to solve the inner optimisation problem, while the active set method 

is the most efficient optimisation algorithm. In addition, the time interior points method consumes 

is several times over that another two methods consume. This shows that another two inner 

optimisation methods can greatly improve the efficiency of transfer learning in DMO. 

 

Table 10:  Mean and standard deviations of computation time (in seconds) of three optimisation 

methods for minimizing the distance of source and target problems in the latent space with 20 

environment changes for all problems with 2 parameter settings under 20 independent runs. 

 
 

Friedman and Nemenyi statistical tests [14] were carried out across benchmark problems. The 

computation time that all algorithms get on one problem with one parameter setting is regarded as 

an observation of the test. Therefore, there are 96 (12 problems and 8 parameters) observed data. 

Friedman detects significant differences in median accuracy with a p value of 2.0311e-42. The 

Nemenyi post-tests are shown in Figure 2(a). This shows that the sqp and active set method are 

significantly more efficient than the interior point method. 

 

 

 

 



 

 

 

 

 

 

3.3.2 Solutions Quality Comparison of Three Tr-DMOEA Variants 

 

In order to evaluate the influence of the improved efficiency on the solution quality, in this section, 

transferred solutions of these Tr-DMOEAs in the first generation after change are first compared. 

The optimised solution of these Tr-DMOEAs in the last generation after change are then compared. 

 

       
(a)                                                      (b).                                                          (c). 

Figure 2: Friedman ranking among (a). computation time of three optimisation methods (active set, sqp and 
interior point) from left to right with Friedman test’s p-value 2.0311e-42; (b). MIGD values of three 
transferred solution sets obtained by Tr-DMOEAs with different inner optimisation methods (interior point, 
sqp and active set) in the first generation after change from left to right with Friedman test’s p-value 
1.7723e-6; (c). MIGD values of three optimised solution sets obtained by Tr-DMOEAs with different inner 
optimisation methods (sqp, interior point and active set) in the last generation after optimisation from left 
to right with Friedman test’s p-value 1.1162e-4. Any pair of approaches whose distance between them is 
larger than CD are considered to be significantly different based on the Nemeyi post-hoc test. 

 

A. Solutions Quality Comparison in the First Generation 

Inverted Generational Distance (IGD) [12] is used to compare the quality of solution sets obtained 

by these three Tr-DMOEAs. IGD can measure the diversity and convergence of a solution set 

found by an algorithm, so it can give us a comprehensive understanding about the performance of 

the compared algorithms. MIGD [13] is a modified version of IGD, which is the average IGD 

values in all changes. The smaller the MIGD the better the algorithm. For each Tr-DMOEA on 

one problem with one parameter setting, in the first generation after each change, a solution set 

obtained by transfer learning in the experiment of section 3.3.1 is used to calculate the IGD value. 

MIGD is the average of these 20 IGD values under 20 changes. Therefore, these three Tr-DMOEA 

variants will obtain one MIGD value on each problem for each parameter. Each algorithm is 

independently run 20 times on each problem instance with each parameter setting. The mean and 

standard deviation of MIGD values of transferred solutions obtained by the three Tr-DMOEAs in 

the first generation after changes are shown in Table 11. In order to show the significant superiority 

of one method to others, Friedman and Nemenyi statistical tests were carried out across benchmark 

problems following Demsar’s recommendation [14]. The MIGD values that all algorithms get on 

one problem with one parameter setting are regarded as an observation of the test. Therefore, there 

are 96 (12 problems and 8 parameters) observed data. Friedman detects significant differences in 

average accuracy with a p-value of 1.7723e-6. The Nemenyi post-tests are shown in Figure 2(b). 

Only results of C5 and C6 are presented due to space limitation. It has been observed that in most 

cases the TrDMOEA with the interior point method achieves the best results, compared with the 

two other Tr-DMOEA variants. The Friedman and Nemenyi statistical tests show that Tr-DMOEA 

with interior point significantly outperforms the other two variants.  

 



 

 

 

 

 

Table 11:  Mean and standard deviations of MIGD values of transferred in the first generation 

after changes optimised by three Tr-RMMEDA variants with different inner optimisation 

algorithms  

 
 

B. Solutions Quality Comparison after Optimisation 

Similarly, in the experiment of section 3.3.1, each TrDMOEA will get a solution set on one 

problem with one parameter setting, after optimisation for t generations. Each algorithm is 

independently run 20 times on each problem instance with each parameter setting. The obtained 

solution set is used to calculate the IGD value. Also, the IGD values of 20 changes are averaged 

to get the MIGD for each problem with one parameter. The mean and standard deviation of MIGD 

values of transferred solutions obtained by three Tr-DMOEAs in the last generation after change 

are shown in Table 12. Friedman and Nemenyi statistical tests [14] were carried out across 

benchmark problems. The MIGD values that all algorithms get on one problem with one parameter 

setting are regarded as an observation of the test. Therefore, there are 96 (12 problems and 8 

parameters) observed data. Friedman detects significant differences in average accuracy with a p 

value of 1.1162e-4. The Nemenyi post-tests are shown in Figure 2(c). 

 

Table 12:  Mean and standard deviations of MIGD values of transferred in the last generation 

after optimisation optimised by three Tr-RMMEDA variants with different inner optimisation 

algorithms 

 
 

Only results of C5 and C6 are presented in Table 12. It has been observed that in most cases the 

Tr-DMOEA with sqp method achieves the best results, compared with two other Tr-DMOEA 

variants. The Friedman and Nemenyi statistical tests show that Tr-DMOEA with sqp significantly 

outperforms the other two variants. After getting the computation time and solution quality 

comparison results of three Tr-DMOEA variants, it can be concluded that the interior point method 

in the original Tr-DMOEA is ineffective and extremely inefficient. Although interior point method 



 

 

 

 

 

can achieve the best transferred solutions among three compared methods, it consumes several or 

even more than ten times of what two other methods consume. In addition, transferred solutions 

found by interior point method become significantly worse than those found by sqp method after 

optimisation, which shows that it is not beneficial for the interior point method to improve the 

efficiency of optimisation, compared with sqp method. 

 

3.4 Summary 

 

This section studies how efficient transfer learning is in DMO through time complexity and 

computation time analysis, showing that the interior point method in transfer learning [8] is 

extremely time-consuming when solving the inner problem. Another two inner optimisation 

methods are computationally studied, to figure out whether the efficiency of transfer learning can 

be improved and whether the improved efficiency will affect the effectiveness. Experimental 

results shows that the sqp method achieve a better balance between the transfer learning efficiency 

and effectiveness of transferred solutions, which makes the changes more proactively and quickly 

adapted. In addition, the sqp method is more robust to changes as it can obtain good solutions in 

the first generation after the changes. Lastly, another experiment is conducted to verify whether 

the purpose of using transfer learning in DMO vanishes, which leverages the computation time of 

transfer learning to optimise randomly generated solutions. The results show that randomly 

generated solutions after being optimised using transfer learning time are greatly better than 

transferred ones, which therefore encourages the proposal of more efficient transfer learning 

algorithms for DMO.  

 

4. Summary and Outlook 
 

This report studies how to improve the effectiveness of transfer learning in dynamic multi-

objective optimisation from the aspect of trying to answer when and how to transfer knowledge in 

dynamic multi-objective optimisation. It has been found that transfer learning fails on problems 

with fixed Pareto optimal sets and when changes are small. In addition, the existing used Gaussian 

kernel function is not ideal. Through avoiding transfer on problems for which transfer learning 

fails and replacing the Gaussian kernel with a linear one, environmental changes in DMOPs are 

more proactively and quickly adapted soon after they happen, rather than spending a lot of time 

adapting to changes. Experimental results show that the proposed approach is able to obtain good 

solutions in the first generation after the changes, which means that the proposed approach is more 

robust to changes. Then, this report investigates how to improve the efficiency of transfer learning 

in dynamic multi-objective optimisation. It has been found that the ‘inner’ optimisation method is 
the most time-consuming in transfer learning after an experimental study. Other two alternatives 

of the ‘inner’ optimisation method are adopted to investigate whether the efficiency of transfer 

learning could be improved and whether the improved efficiency affects the performance of 

transfer learning. Experimental results show that the greatly enhanced efficiency does not result in 

large deterioration of the quality of transfer learning. In addition, the good results obtained with 

the solutions by the ‘sqp’ method in the last generation after the changes mean that Tr-DMOEA 

with ‘sqp’ is more robust in a long run.  

 



 

 

 

 

 

In the future, a potential work is to find another kernel function that can achieve non-linear 

transfers and does not have the weakness of the Gaussian kernel. Also, another optimisation 

algorithm can be found to solve the inner problem efficiently and effectively. In addition, other 

transfer learning methods in the field of machine learning can also be studied to solve DMOPs, 

the efficiency of which should be also considered. At last, it is important to explore real-world 

applications of transfer learning based DMO, e.g., in smart manufacturing and smart logistics.  
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Appendix 

 
Table of acronym 

ICT Information and Communications Technology  

DMO  Dynamic multi-objective optimisation 

DMOEA Dynamic multi-objective evolutionary algorithm 

DMOPs dynamic multi-objective optimisation problems 

POS Pareto optimal set  

POF Pareto optimal front 

Tr-DMOEAs Transfer learning-based dynamic multi-objective optimisation 

algorithms  

IGD Inverted generational distance 

RMMEDA Regularity model-based multi-objective estimation of 

distribution algorithm 

DAL Domain Adaption Learning 

MMD Maximum Mean Discrepancy 

RKHS Reproducing Kernel Hilbert Space 

NSGA-II Elitist non-dominated sorting genetic algorithm II 

MOPSO multi-objective particle swarm optimisation algorithm ( 

TCA Transfer component analysis 

Sqp Sequential quadratic programming 

 


	Executive summary
	Major Achievements
	2.1 When Does Transfer Learning Work/Fail in Dynamic Multi-objective Optimisation?
	2.1.1 Computational Investigation into Transfer Learning in DMO
	2.1.2 Avoiding Transfer on Problems with Fixed POS And Small Environmental Changes
	2.1.3 Experimental Studies of the Proposed Strategy
	2.2 How Does Transfer Learning Work in Dynamic Multi-objective Optimisation?
	2.2.1 Mathematical Proof that Gaussian Kernels Are Not Ideal
	2.2.2 Replacing Gaussian Kernel with Linear Kernel
	2.2.3 Experimental Evaluation of Different Kernels
	2.3 Improved Transfer Learning in DMO
	2.3.1 Proposed Method to Generate An Initial Population
	2.3.2 Evaluation through Computational Studies
	2.4 Summary
	3. Improve the Efficiency of Knowledge Transfer in Dynamic Multi-objective Optimisation
	3.1 Efficiency of Transfer Learning in DMO
	3.2 Solutions Quality after Optimisation for Which Transfer Learning Cost Is Used
	3.2.1 Computation Time of Transfer Learning Used for Optimisation
	3.2.2 Quality Comparison of Transferred And Random Solutions with Same Cost Budget
	3.3 Computational Analysis of Three Tr-DMOEA Variants
	3.3.1 Computation Time Comparison of Three Tr-DMOEA Variants
	3.3.2 Solutions Quality Comparison of Three Tr-DMOEA Variants
	3.4 Summary
	Bibliography
	Appendix

