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Acknowledgement 

This deliverable was initially named "Text mining models for product feature optimization". The 

main goal was on developing statistical machine learning and text mining methods to 

automatically detect customer opinions on aspects and features of products starting from large 

collections of unstructured texts. However, user-generated data do not contain only texts, and 

considering this type of data solely would have been limiting for our goal. Furthermore, 

interpretability has become an increasingly important aspect in real-world applications recently. 

To make the topic of the deliverable more exhaustive, we included these two aspects in our work 

and changed the deliverable title into "Interpretable models for product feature optimization with 

user-generated data". 

Executive summary 

This document provides a concise report on the research invested and the scientific contributions 

made regarding the work package 3.3 in ECOLE. The objective of WP3.3 is to investigate methods 

for automatically detecting customer opinions on aspects and features of products starting from 

large collections of unstructured data, e.g. textual data. In ECOLE, the idea of learning human 

understandable representations with the help of supplementary user-generated information was 

proposed. The findings suggest that using the additional information contained in the unstructured 

user-generated data can help unveiling the user opinions and the product features while improving 

the interpretability of the associated latent representations. 

Major Achievements 

Major scientific achievements regarding the work package 3.3 are presented. In particular, short 

answers to some of the most important research questions are described: 
 

 

Research Questions Discussion 

 

Can additional human-understandable data 

(e.g. textual data) be integrated for learning 

high-dimensional representations of items in 

order to improve their interpretability?  

 

 

Our findings indicate that is possible to learn 

human-understandable vector representations 

from textual data (cf. Figure 3 and Figure 5). 

 

 

How does learning interpretable vector 

representations affect the predictive 

performance of the models? 

 

 

 

In our findings, learning interpretable vector 

representations does not affect the predictive 

performances. The results show that we are 

able to learn human-understandable vector 

representations while maintaining competitive 

predictive performances (cf. Table 2).  

 

  



 

 

 

 

 

 

 

What are potential ways of relating the 

interpretable latent representations to 

application scenarios? 

 

The presented approaches can be integrated 

with different learning tasks, as long as some 

textual information is available. Additionally, 

we believe that the learned latent 

representations can be directly used as model 

input for downstream tasks. Potentially, we 

could utilize user preferences encoded in the 

latent representations for other multi-criteria 

optimization frameworks. 

 

  



 

 

 

 

 

1 Introduction 

In the Experience-based Computation: Learning to Optimise (ECOLE) project, we aim to address 

several challenges in the automotive setting, including Optimisation using Natural Computation, 

Multi-objective optimisation and System Engineering and Big Data Analytics. The project has 

been further divided into several subprojects, where each early stage researcher (ESR) is 

responsible for each subproject. The research aims of ECOLE include shortening the product 

cycle, reducing the resource consumption during the complete process, and creating more balanced 

and innovative products. Instead of just developing technologies to solve a given problem, it takes 

a bold step forward and propose to use knowledge automatically across different problem domains. 

Referring to knowledge, skill, and practice derived from problem solving processes in time, the 

goal is to automatically learn and transfer the experience of optimizing one product or process for 

solving other optimization problems. 

 

In Work Package 3 (WP3) of the ECOLE project, we focus our research on developing statistical 

machine learning and text mining methods for automatically detecting customer opinions on 

aspects and features of products, and for analyzing user behaviors starting from large collections 

of unstructured data. During the report period, the idea of learning human understandable 

representation with the help of supplementary user-generated information was proposed. Since 

user-generated data can be of different forms (e.g. texts, time series), we aim at developing 

different approaches considering the different nature of the data. In the context of ECOLE, the 

final target is to incorporate the valuable information contained in the user-generated into industrial 

applications.  

 

General overview and motivations 

User-generated data (e.g. social media actions, reviews in online retailers) contain a wealth of 

information. In the context of Industry 4.0, leveraging the rich latent information contained in the 

available user-generated data can be crucial for many purposes. Nowadays, research in the 

manufacturing industry focuses on developing advanced data mining approaches to discover 

hidden patterns, to predict market trends and to learn customer preferences and unknown relations, 

for improving their competitiveness and productivity. Thanks to scalable, high-performance 

infrastructures we usually rely on sophisticated machine learning models with the risk of creating 

and using decision systems that we do not really understand. Indeed, these techniques are 

essentially black boxes and do not have a strong theoretical foundation. Consequently, the results 

are poorly explainable. The latter is probably the best-known lack in this area and, depending on 

the domain, this problem can be crucial. For example, in a medical application, how can we trust 

a diagnosis suggested by an algorithm with high accuracy but without a complete understanding 

of the output? In automotive design, how can a manufactory invest on a new car design if we 

cannot investigate the reasons behind a given algorithmic decision? In business scenarios, how can 

a company make some possible profitable decision without understanding if the proposed move is 

the right one or not?  

 



 

 

 

 

 

For this reason, considering the wide use of machine learning methods in real-world applications 

and the increased attention regarding the interpretability capacity of the models, we will also focus 

on developing methods to be interpretable, to make the resulting output more trustable. 

 

The need for interpretable models 

Recently, deep learning approaches are reaching impressive performances on a variety of different 

tasks (e.g. computer vision, text classification) [1]. Despite the good performances, there are still 

gray areas regarding these methods. Many works [2] [3] [4] [5] have proved how easy is to fool a 

deep learning method by altering an image or a text with some perturbations. For example, 

experiments show that some changes in an image would lead the model to classify it as something 

different (e.g. a tomato as a dog) or that is possible to produce images that the model would classify 

with high confidence but are completely not recognizable by humans (e.g. classifying a white noise 

as a tomato). The same has been proved for text analysis, where minimal perturbations in a text 

lead the model to not recognize the right topic. These results show some of the limitations of these 

models and raise reasonable concerns about their trustiness. This limitation is particularly serious 

when dealing with real-world applications and decisions that could have an economic or social 

impact. The wide use of machine learning methods in industrial, medical and socio-economical 

applications is requiring the research community to provide explanations about the results. Thus, 

interpretable AI has been increasingly receiving more and more attention across different scientific 

disciplines and industry sectors. 

 

The need for integrating user-generated data in the engineering-data driven analytics for 

industry verticals 

In the context of Industry 4.0, the user-generated data available online could have a primary role 

to discover market trends, user preferences and to improve market strategies and productivity. The 

final target of this work will be then to incorporate the valuable information contained in the user-

generated data into a multi-domain framework for industrial applications (e.g. automotive 

process). Ideally, we could use this information to provide useful insights for product feature 

optimization. For example, in a product design problem, we could utilize user design preferences 

extracted from textual data for adding some aesthetic constraint to the multi-criteria optimization 

framework, in order to create a new design that could potentially satisfy users more than before 

while improving its aerodynamics. 

 

For the limitations of the machine learning methods explained above, the results should be human-

interpretable. To support humans in a cooperative process with AI, we need to develop models and 

techniques that are human-understandable, in order to assist them in the evaluation and decision 

steps. The interpretability of the results will help the experts to make decisions in an aware manner. 

In this way, the evaluation process of AI-based applications will be faster, easier and more reliable. 

 

Summarizing, through our work, we have the following targets: 

1. Detect user preferences and analyze user behaviors. 

2. Exploit different types of user-generated data: e.g., texts and time series. 

3. Investigate and develop interpretable models and outputs. 

4. Integrate our findings in real-world applications and, in particular, industrial applications. 



 

 

 

 

 

 

In this report, we present the current state of our research on interpretable models for user 

preference learning with user-generated data gathered from real-world scenarios.  

In section 2, we describe the methodology for interpreting node vector representations using text-

labeled graphs. First, we concisely report the state-of-the-art related to our work. Second, we will 

present our approach to improve the interpretability of node vector representations (usually not 

interpretable from the human perspective) using the additional textual information that, in many 

cases, is available along with the structure of the data (i.e. graph).  

In section 3, we introduce a probabilistic framework for generating a model-based visualization 

tool to organize user and product latent classes with review-text information. Many works focused 

on designing accurate and fast algorithms for recommendation, but less attention on implementing 

systems for understanding and for visualization of user preference and product characteristic 

patterns using review data. 

In both sections, the running example will be an e-commerce system, but the proposed approaches 

can be integrated with alternative scenarios having textual information.  

 

In section 4, we discuss future ideas for learning user profiles starting from different types of user-

generated data than textual, namely event point processes and multivariate time series. The ideas 

presented in this section are in progress, and we are planning to investigate them in the remaining 

period. Section 5 concludes the report. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

2 Interpretable user profiling with text-labeled graphs. 

Many real-world user data are represented in forms of graphs, e.g. social networks, recommender 

systems and citation networks, since the graphs can capture relations and interactions of the 

involved entities. In this scenario, the performances are usually improved by using methodologies 

that represent the graph entities through vector representations (i.e. embedding) while preserving 

structural information. These methods often map nodes into latent spaces and learn vector 

representations of the nodes for a variety of downstream tasks. To gain trust and to promote 

collaboration between AIs and humans, it would be better if those representations were 

interpretable for humans. For an unsupervised learning setting as node embedding, interpretation 

can be more complicated since the embedding vectors are usually not understandable for humans 

(Figure 1).  

 
Figure 1 - Example of node embedding 

On the other hand, in many cases, nodes and edges in a graph are often associated with textual 

data, e.g. reviews in user-product graphs, social media posts in social media or medical narratives 

in doctor-patient graphs. A question naturally arises: could we integrate the textual information in 

the learning phase to improve the interpretability of node embedding?  

2.1 State of the art 

The adoption of complicated machine learning methods (e.g.~deep neural networks) in real-world 

applications have recently led to an increasing interest in interpretable AI [6]. The extensive use 

of machine learning methods in industrial, medical and socio-economical applications requires a 

better understanding of these models. The improper use of machine learning could lead to high-

impact risks since humans could not fully understand the underlying system or the resulting output. 

Recent advances in interpretable AI propose many post-hoc interpretability approaches and, 

depending on the setting and the application domain, they can be categorized as follows:  

 

- Global/local explanations: LIME [7] and SHAP [8] are the most popular approaches in 

this category. They are surrogate models able to explain the outputs of any classifier in an 

interpretable way. For example, in a medical environment, they can visualize what are the 

symptoms in the patient's history that led to the prediction ‘The patient has the flu’. 

 



 

 

 

 

 

- Logic-based approaches: the logic-based methods create falling rules and interpretable 

decision sets. In [9], inspired by healthcare applications, the authors propose a Bayesian 

framework for learning falling rule lists that consist of an ordered list of if-then rules to 

determine which sample should be classified by each rule. [10] propose to learn decision 

sets (i.e. independent sets of if-then rules) through an objective function that 

simultaneously optimizes accuracy and interpretability of the rule. 

 

- Attribution methods: in this broader category, the methods try to explain the output by 

highlighting characteristics of the output itself (e.g. textual explanations with highlighted 

relevant words) or by highlighting characteristics of the input that strongly influence the 

result. In the latter case, the most popular approaches attempt to analyze the gradient to 

investigate how the input features condition the output. [11], [12] generate saliency maps 

in convolutional neural networks (CNNs). [13] estimates the influence of training examples 

in neural matrix factorization models. 

 

In this work, we focus our attention on explaining outputs in a different unsupervised learning 

case, namely node embedding. There are few previous works attempting to improve the 

interpretability of node embeddings. The existing works mainly aim to explain the embedding 

dimensions as clusters in an implicit manner, e.g. employing Canonical Polyadic decomposition 

[14], and assigning a meaning to each vector dimension [15]. Unlike these approaches, our method 

focuses on improving the interpretability of node embeddings explicitly to get human 

understandable explanation by exploiting the extra textual information associated with the graphs. 

Our method maps the latent space of node embeddings into textual space through word-based 

vectors. Thus, the additional available textual information works as a human-understandable 

source to generate explanations of node embeddings. 

 

We present an approach to represent the latent space of node embedding into a textual space by 

exploiting the available human-understandable information (i.e. the textual information) to 

interpret the embedding vectors. Starting from a text-labeled graph, we integrate the textual 

information into the model to learn interpretable node embeddings. For each node 𝒊, we generate 

a textual explanation that is formulated as a node-specific word distribution conditioned on its 

embedding vector 𝒙𝒊. Since the creation of the word-vectors is directly linked with the node 

embeddings (which are supposed to work well in downstream tasks), we use an objective function 

that combines the accuracy of a downstream task (e.g. rating prediction, sentiment analysis) with 

the likelihood of the textual corpus. We introduce an additional node clustering to model the 

patterns among the embedding vectors, the corresponding textual explanations, and the associated 

texts. The additional cluster assignment allows our model to learn the discrete structure of the 

graph data. In summary, our model attempts to combine two objectives: a) learn node embeddings 

that perform well in downstream tasks b) generate textual explanations of the learned vector 

representations. To illustrate the method, we use a typical review network as a running example. 

Assume there is a bipartite graph 𝓖 with 𝑵 number of users and 𝑴 number of products. Between 

a user 𝒊 and a product 𝒋, there is an edge 𝒆{𝒊𝒋}. Each edge is associated with a set of words (namely, 

a review) 𝒔𝒊𝒋 = {𝒘𝒊,𝒋,𝟏, … , 𝒘𝒊,𝒋,𝑺} and a rating 𝒓𝒊𝒋. The size of the vocabulary, for each product 

category, is 𝑽. The number of reviews is 𝑹. We will now present the architecture of our approach. 



 

 

 

 

 

2.2 Details on the architecture for textual explanation generation 

Technically, we embed our model in a neural generative modeling framework, which integrates 

good properties of probabilistic generative models and neural networks. In particular, we sample 

the edges and the associated texts as follows: 

• For each user 𝑖, there is an embedding vector 𝒙𝑖 ∈  ℝ𝐷 associated, which is sampled from 

a multivariate Gaussian with zero mean and a diagonal covariance matrix 𝚰:  
𝒙𝑖 ∼  𝒩𝐷(𝟎, 𝚰)  

• For all users, we introduce 𝐾 clusters, and each user cluster 𝑘 is associated with an 

embedding vector  𝒄𝑘 ∈  ℝ𝐷, which is again drawn from a Gaussian: 

𝒄𝑘 ∼  𝒩𝐷(𝟎, 𝚰) 

Here we assume all embedding vectors have the same dimension to avoid complicated 

notation. 

• The user cluster weights 𝜃𝑖 are computed based on the embedding vectors: 

𝜃𝑖,𝑘 = sparsegen − lin(𝑓(𝒙𝑖 , 𝒄𝑘 ; 𝜙): 𝜆𝑢) 

which specifies the probability of the user 𝑖 in the cluster 𝑘. The function 𝑓 quantifies the 

relevance or similarity between the user 𝒙𝑖 and the cluster 𝒄𝑘. We define the function using 

a neural network with parameters 𝜙, e.g., a MLP with 𝒙𝑖 and 𝒄𝑘 as inputs and sparsegen-

lin as output layer. The hyperparameter 𝜆𝑢 represents a regularization term shared among 

all users. Sparsegen-lin is a controllable extension of sparsemax [16], defined in [17] as:  

sparsegen − lin(𝒛; 𝜆) =  sparsemax (
𝒛

1 − 𝜆
) 

where the coefficient 𝜆 < 1 controls the regularization strength. In particular for 𝜆 → 1−, 

the probability distribution has the minimum support (i.e. hardmax) whereas for 𝜆 →  −∞, 

the resulting distribution is non-sparse (i.e. uniform). 

• For each product 𝑗 we can proceed in an equivalent manner introducing 𝐿 clusters and 

generating 𝒙𝑗, 𝒄ℓ and 𝜃𝑙,ℓ employing a different neural network 𝑔 and using 

hyperparameters 𝜉 and 𝜆𝑝 accordingly. 

• We now sample a text associated with an edge 𝑒𝑖,𝑗. Draw each word 𝑤𝑖,𝑗,𝑣 in the text as 

follows: 

𝒛𝑖,𝑣 ∼ Categorical(𝜃𝑖) 

𝒛𝑗,𝑣 ∼ Categorical(𝜃𝑗) 

𝒘𝑖,𝑗,𝑣 ∼ Categorical(β, 𝒛𝑖,𝑣, 𝒛𝑗,𝑣) 

Where 𝛽 is a 3D tensor representing the probabilistic patterns among user clusters, product 

clusters and words. In particular, 𝛽𝑘,ℓ,: specifies a categorical word distribution conditioned 

on the user cluster 𝑘 and the product cluster ℓ. It lies in a (𝑉 − 1)-dimensional simplex 

Δ𝑉−1, i.e. ∑ 𝛽𝑘,ℓ,𝑣
𝑉
𝑣=1 = 1 and 𝛽𝑘,ℓ,𝑣 > 0. 𝑉 denotes the number of words. The parameter 

𝛽𝑘,ℓ,𝑣 is computed as: 

    𝛽𝑘,ℓ,𝑣 = sparsemax(ψ(𝒄𝑘 , 𝒄ℓ, 𝒙𝑣; ρ))  



 

 

 

 

 

The function 𝜓 defines a neural network with parameters 𝜌.  𝒙𝑣 denotes the pre-trained 

word vector from Word2Vec [18]. The word sampling is inspired by the topic models. 

Here we assume every relation and word follow their distributions with distinct parameters 

computed with functions of the embedding vectors of the involved nodes. Figure 2 depicts 

a schematic representation of the model. 

 
Figure 2 - Schematic view of our model. Dashed boxes represent input (non-trainable) data. The line connections depict the 

dependencies between the involved variables. 

 
Given the architecture, we can now generate textual explanations of node embeddings. For a node, 

e.g. a user 𝑖, the textual explanation is formulated as a node-specific word distribution 𝑝(𝒘𝑣|𝒙𝑖) 

conditioned on its embedding vector 𝒙𝑖.  

In particular, the probability of a word 𝑣 to be used to explain the embedding 𝒙𝑖 is computed as: 

𝑝(𝒘𝑣|𝒙𝑖) =
1

𝐿
∑ 𝜃𝑖,𝑘  𝛽𝑘,ℓ,𝑣

𝑘,ℓ

 

This is a marginal distribution over all possible user and product clusters. Since the target 

distribution is not related to any specific products, the product clusters are equally distributed, i.e. 

the term 1 𝐿⁄  in the equation above. Textual explanations for product nodes can be generated in an 

equivalent manner. 



 

 

 

 

 

 

The learning of the node embeddings and the corresponding textual explanations is driven by two 

learning objectives. The first objective is the log-likelihood of the review corpus. The parameters 

to be learned include embedding vectors of clusters { 𝒄𝑘}𝑘=1
𝐾  and { 𝒄ℓ}ℓ=1

𝐿 , and parameters 𝜙, 𝜉, 𝛾 

and 𝜌 that define the neural networks 𝑓, 𝑔 and 𝜓. Thus, the log-likelihood of an edge and the 

corresponding text is: 

ℒ1 = log 𝑝(𝑒𝑖,𝑗 |𝒙𝑖 , 𝒙𝑗 , 𝛾) + 

      + ∑ log (∑ ∑ 𝑝(𝒛𝑖 = 𝑘|

𝐿

ℓ=1

𝐾

𝑘=1

𝑆

𝑣=1

𝒙𝑖 , 𝒄𝑘 , 𝜙) 

       𝑝(𝒛𝑗 = ℓ|𝒙𝑗 , 𝒄ℓ, 𝜉)𝑝(𝒘𝑖,𝑗,𝑣|𝒄𝑘 , 𝒄ℓ, 𝒙𝑣, 𝜌)) 

where the first term represents the probability that an edge exists between two nodes. This is 

implicitly included in the computation of the textual information since we suppose that every edge, 

if exists, has some associated text. 

 

The second objective is the error of the predictions. In our study case, this will be the rating 

prediction error. 

ℒ2 =
1

𝑅
(𝑟̂𝑖,𝑗 − 𝑟𝑖,𝑗)

2
 

with  

𝑟̂𝑖,𝑗 = ℎ ([
𝒙𝑖

𝒙𝑗
] ; 𝜔) 

where ℎ(⋅) can be any complex function. In our case, ℎ(⋅) defines a deep neural network with the 

concatenation of the node embeddings 𝒙𝑖 and 𝒙𝑗 as input and 𝜔 as hyperparameters. Finally, we 

can define the complete objective function as: 

min
Θ

 ℒ = min
Θ

 (ℒ1 + 𝜇ℒ2) 

where Θ represents the parametric space and 𝜇 is a hyperparameter to trade-off the importance of 

the prediction accuracy and the log-likelihood of the corpus. 

2.3 Experiment results 

We evaluate our method with a popular benchmark dataset: Amazon Product Data1. The dataset 

includes millions of product reviews and metadata divided per category collected from May 1999 

to July 2014. We focus on the 5-core version of the data sets, where each user and item has at least 

5 associated reviews. The ratings (labels of links between users and items) are integer values 

between 1 and 5. We use data from 12 categories for our evaluation.  

 

To preprocess the texts associated with the review graphs, we embed the words into a 200-

dimensional vector space using Word2Vec [18]. We train the word vectors with the raw reviews 

to capture the semantic and syntactic structure of the corpus. We normalize the text via the 

following steps: (a) set the maximum length of a raw review to 300; (b) lower cased letters; (c) 

 
1 http://jmcauley.ucsd.edu/data/amazon 



 

 

 

 

 

remove stopwords, numbers and special characters; (d) remove non-existing words using an 

English vocabulary as filter; (e) lemmatization; (f) remove reviews with just one word.  

The textual information shows strong diversity with respect to product category. For example, 

words frequently occurring in the Baby category would not occur in Office product reviews. 

Therefore, the vocabulary selection has been performed independently for each category. Let 𝒞 

denote the review collection for a given category, we consider each review 𝒔𝑖𝑗 ∈ 𝒞 as a document. 

For each word 𝑤 ∈ 𝒔𝑖𝑗, we compute the corresponding tf-idf index and extract the top 10% words 

(at most 10 for longer reviews) with respect to such index. Then, we merge all the top-words 

extracted from the corpus 𝒞 and we sort them with respect to the tf-idf score. The first 𝑉 words in 

this ranking denote the vocabulary for the given category. Finally, we further filter the reviews to 

remove the ones without any word belonging to the vocabulary. To tackle the word co-occurrence 

sparsity problem over short texts, we extract biterms for each document [19]. For a node-related 

document with 𝑣 words, the resulting biterm extraction results in 𝑣(𝑣 − 1)/2 unordered word-

pairs. In this way, we can pattern the textual information by means of biterms co-occurring in the 

same document. Some statistics of the preprocessed data sets are summarized in Table 1. 

 

 
Table 1- Statistics of the preprocessed data sets. 

 

 
Experimental setting 

We set the embedding vector dimensionality 𝐷 = 200 for all users, products and clusters 

embeddings. We evaluated the robustness of our method to changes in the hyper-parameter 𝐷 

but did not observe any significant performance difference. The number of user clusters 𝐾 = 50 

and product clusters 𝐿 = 30; we evaluated the values [10,20,30,40,50] and we observed that, 

generally, larger values lead to more sparse cluster assignments. We set the coefficients for the 

sparsegen-lin function as 𝜆𝑢 = 0.9 and 𝜆𝑝 = 0.75. The function ℎ(⋅) is a neural network with 

four hidden fully-connected layers [128,64,64,32]. The experiment was run for 200 learning 

iterations and validated every 2 iterations. A single epoch performs RMSProp with a learning 

rate set to 2𝑒 − 6 and batch size of 256.  

 



 

 

 

 

 

Rating prediction results 

We compare our method with several baselines considering both factorization-based approaches, 

like SVD and NMF [20], and review-based approaches (i.e. methods that take advantage of the 

textual information for improving the rating prediction performance), including HFT [21], 

DeepCoNN [22], TransRev [23] and Attn+CNN [24]. We also compare our method with a simple 

baseline that uses the average of the training ratings as prediction. Following previous works, the 

data is randomly split by reviews into training (80%), validation (10%) and test (10%) sets. We 

independently repeat each experiment on five different random splits and report the averaged Mean 

Squared Error (MSE) to quantitatively evaluate the results. Note that we primarily focus on the 

generation of the textual explanation for node embeddings. This experiment is a direct 

consequence of how we define the generation of textual explanations and the loss. From (Table 2), 

we can observe that our approach outperforms other models on the majority of the data sets and 

gets comparable results on the remaining. This clearly confirms the capacity of our proposed 

method on learning node embedding that competitively perform on a rating prediction task. 

 

 

  
Table 2 Mean Squared Error (MSE) comparison between our method (iGNN) and state-of-the-art approaches. 

 
Analysis of the probabilistic patterns 

We now investigate the capacity of our model on generating textual explanations for the learned 

node vector representations in order to create a human-understandable explanation of them. We 

first evaluate the probabilistic patterns between user clusters, product clusters and words by 

analyzing the learned word distributions 𝛽⋅,⋅,𝑣. As defined before, 𝛽 specifies the word distributions 

for each combination of user and product cluster. For each category, to visualize the learned word-

vector distributions, the TSNE method [25] is employed for dimensionality reduction. 

 

Figure 3 illustrates the cluster organization for different categories. One can find that the clusters 

are well structured and mapped into the 2-dimensional embedding space with different 

distributions. For further analysis, we select a pair of clusters from two different categories, and 

we compute the corresponding average word distribution. In theory, one could infer the main topic 

of each cluster looking at the most probable words of the averaged cluster word distribution. (Table 

2) reports the most probable words for each of the selected clusters. The results validate our 

hypothesis since, for each cluster, we can infer the sub-category of interest. For instance, the first 



 

 

 

 

 

cluster in the Pet Supplies category refers to the grooming sub-category, while the second one 

focuses on aquariums. Thus, the word distributions 𝛽⋅,⋅,𝑣 capture the latent structures of the data 

and help to find the patterns between user and product clusters, enhancing the interpretability of 

the results. Indeed, knowing the user and product cluster assignments one can find the sub-

categories highly correlated with the given items. 

 

 

 

  

 

 
Evaluation of generated textual explanations 

To investigate whether our model is able to generate textual explanations as node-specific word 

distributions, we attempt to provide both quantitative and qualitative evaluation of the node-related 

explanations. As reported in [26], lacking common metrics for interpretability quality is 

problematic to the research community to make progress in this area and, in an unsupervised 

setting, the problem is even more clear. Indeed, it is common for researchers to simply rely on the 

human visualization of the results, e.g. employing attention mechanisms or heat maps, in order to 

make the results human-explainable [6]. However, although our case study can be evaluated by 

just relying on human perception of the highlighted relevant words, we try to introduce some 

metrics that could further help on assessing the quality of the results. To visualize and evaluate the 

correlation between the generated word distributions and the node-related words in the data, we 

proceed as follows. Given a sampled node, we first extract the top-15 words in the generated word 

distribution, i.e. the 15 words having the highest probability in the distribution. Second, we extract 

Figure 3 – Cluster organization of the word-vector distribution 

𝛽⋅,⋅,𝑣 for different product categories. The cluster analyzed in 

the table are highlighted in cyan. 



 

 

 

 

 

the set of words associated with this specific node in the data. Let denote with 𝐴 and 𝐵 respectively, 

these two sets. 

The Jaccard similarity is used to measure similarity between two sets of words 𝐴 and 𝐵, which is 

defined as follows: 

𝐽(𝐴, 𝐵) =
|𝐴 ∩ 𝐵|

|𝐴 ∪ 𝐵|
 

To further capture the semantic similarity of the two sets, we integrate the Word Mover's Distance 

(WDM), introduced by [27]; this metric takes into account the word similarities in the word 

embedding space and computes the minimum distance that the words in text 𝐴 need to travel in 

the semantic space to reach the words in text 𝐵. Since Jaccard and WDM have different scales and 

behaviors, we apply MinMaxScaler to Jaccard, and transform WDM as follows: 

𝑡 − 𝑊𝐷𝑀(𝐴, 𝐵)  =  1 − (
𝑑𝑖 − min (𝒅)

max(𝒅) − min (𝒅)
) 

where 𝑑𝑖 is the distance between the sets 𝐴 and 𝐵 for a node 𝑖, and 𝒅 represents all the distances 

between the two sets for each node in the graph. In this way, the transformed distance score is in 

the range [0,1] and, opposite to the definition of semantic distance, the higher the value the closer 

are sets 𝐴 and 𝐵. 

 

We investigate the quality of the generated textual explanations by computing these scores for 

different data sets. Figure 4 illustrates the distribution of values of these measures across the nodes 

in the data sets.  

 

 
Figure 4 - Evaluation of the metric distributions across all data sets. 

 
The Jaccard values mostly vary in the range [0.4 − 0.7], while the WDM scores are highly 

concentrated in the range [0.6 − 0.8]. The lower Jaccard scores do not affect the performances of 

the model, instead, confirms that our model generates textual explanations that are not redundant 

as would have been with too high similarity scores. Indeed, as written in [6], two sets of words can 

be semantically similar even with low lexical overlapping. Moreover, this proves that our approach 

is not solely based on lexical similarity, but takes into account the semantic similarity of the words 

generating textual explanations that are not too similar to the original data. 

 

 

 

 



 

 

 

 

 

 

Figure 5 shows an example of the generated word distribution for a sampled node.  

 

 
Figure 5 – Interpretability case study on a random node. The figure depicts the node-specific word distribution; the 15 highest 

probabilities are highlighted by green points. TOP-15 WORDS and NODE-RELATED WORDS refer to the sets 𝐴 and 𝐵 defined 

above. Black bold represents the overlapping words; blue bold highlights words that may explain further characteristics of the 

analyzed node. 

 
We further evaluate the results on the Baby, Gourmet Food, and Pet Supplies categories. The 

example nodes in Table 3 demonstrate the effectiveness of our model to capture the most probable 

words associated with a given node. In particular, not only direct correspondences with the words 

in the data but also highly related words.  

For example, looking at the sampled node from the Baby category, we can observe that the 

generated explanation might be used to better capture further characteristics of the given node. 

Specifically, it looks like the node is related to toys and strollers and, analyzing the blue bold 

highlighted words, we can infer that the items should also be safe and made with good quality 

materials. Additionally, we can notice the impact of the scores on the quality of the generated word 

distributions. The first two examples, taken from the Gourmet Food data set, have different Jaccard 

scores while similar distances. Nevertheless, the first example looks semantically good. This 

shows the importance of considering the word vector representations during the training phase 

since they can push the probabilities to words semantically closer.  



 

 

 

 

 

We can also observe that: (a) the model does not take into account the polarity of the words. An 

extension could be achieved by exploiting the sentiment (or rating) information to get 

positive/negative word distributions; (b) the quality of vocabulary could be improved by using 

more sophisticated techniques that might potentially lead to better performances. 

 

 

 
Table 3 – Evaluation of retrieved nodes from different data sets. Black bolds represents the matching words; blue bold highlights 

words that may explain further characteristics of the node. 

 

 

 

 

 

 



 

 

 

 

 

3 Probabilistic framework for topographic organization of user and product 

latent classes based on product reviews 

The availability of large collections of textual data (e.g. product reviews, social media posts) has 

driven researchers to focus on developing text-based methods for recommendation. Indeed, 

corpora of textual documents contain a wealth of information. On the one hand, they may help 

users to make decisions that are more aware. On the other hand, they may be used to improve the 

predictive performance of recommendation systems. In recent years, many approaches have tried 

to extend and improve recommendations models by leveraging the textual information. However, 

most of the proposed models mainly focus on predictive performances, while less attention has 

been paid on understanding the nature of the reviews and on developing visualization components 

to enhance the interpretability capacity of the models. When available, the visualization 

component is not model-based. In many cases, approaches like t-SNE [25] are employed for 

visualizing high-dimensional representations into a 2-dimensional space. However, the resulting 

plot is just a projection and does not reflect any consistent visualization-driven model formulation 

of the underlying patterns. Thus, the output could be misleading and erroneously evaluated. In this 

work, we present a probabilistic framework for the topographic organization of review data. 

Differently from previous works mainly focused on the rating patterns [28], we impose a double 

two-dimensional topological organization based on the textual information. As a result, latent 

classes of users and products are organized on two different square grids. The visualization in a 

two-dimensional grid of word patterns provide an accessible way for exploring latent features of 

users and products using complicated and large amounts of textual data. Moreover, the 

probabilistic assumptions of our system enable us to analyze the extracted information in a 

statistical way.  

3.1 Details on the proposed probabilistic model 

Assume a collection of 𝑁 users 𝒰 = {𝑢1, 𝑢2, … , 𝑢𝑁}, 𝑀 products 𝒫 = {𝑝1, 𝑝2, … , 𝑝𝑀} and 𝑉 words 

𝒱 = {𝑤1, 𝑤2, … , 𝑤𝑉}. The data 𝒟 is a collection of 𝑅 triples 𝒟 = {(𝑢𝑖 , 𝑝𝑖 , 𝑟𝑖)}𝑖=1
𝑅 , each triple 

identifying the user 𝑢𝑖 ∈ 𝒰 writing a review 𝑟𝑖 on product 𝑝𝑖 ∈ 𝒫. The review 𝑟𝑖 is a multi-set of 

words from 𝒱, i.e. 

𝑟𝑖 = (𝑤1
𝑖 , 𝑤2

𝑖 , … , 𝑤𝑆𝑖

𝑖 ), 𝑤𝑖
𝑗

∈ 𝒱 

The latent variables 𝒛𝑢 ∈ {1, … , 𝐾} and 𝒛𝑝 ∈ {1, … , 𝐿} represent abstract classes of users and 

products. Given a review 𝑖, the probability of a word 𝑤𝑗 ∈ 𝑟𝑖 is modeled as: 

𝑃(𝑤𝑗
𝑖|𝑢𝑖 , 𝑝𝑖) = ∑ ∑ 𝑃(𝑤𝑗

𝑖|𝒛𝑢 = 𝑘, 𝒛𝑝 = ℓ)

𝐿

ℓ

𝐾

𝑘

𝑃(𝒛𝑢 = 𝑘|𝑢𝑖)𝑃(𝒛𝑝 = ℓ|𝑝𝑖) 

 

Introducing the topological organization 

A grid topology is introduced into the latent space via the channel noise methodology. The channel 

noise is expressed through the neighborhood function: 



 

 

 

 

 

𝑃(𝒚|𝒛) =
exp (

−|𝒛 − 𝒚|2

2𝜎2 )

∑ exp (
−|𝒛 − 𝒚′|2

2𝜎2 )𝒚′

 

For the latent classes 𝒚 and 𝒛 lying close to each other on the grid, the probability of corrupting 

one into the other is high. The parameter 𝜎 > 0 represents the specificity of the topological 

neighborhood for class 𝒛; low values of 𝜎 correspond to sharply peaked localized transition 

probabilities, while larger values of 𝜎 induce general broad neighborhoods spanning large areas of 

the latent grid.  

For each user 𝑢 ∈ 𝒰, we proceed as follows: 

1. Randomly generate a latent class index 𝒛𝑢 = 𝑘 by sampling the user-conditional 

probability distribution 𝑃(⋅ |𝑢) on 𝒛𝑢. 

2. Transmit the class identification 𝒛𝑢 through a noisy communication channel, and 

receive (a possibly different) class index 𝒚𝑢 = 𝑘′. 

Where the class index represents a particular point on the grid. 

 

For each product 𝑝 ∈ 𝒫, we can proceed in an equivalent manner. 

The model has now the following form: 

𝑃(𝒚𝑢 = 𝑘′|𝑢𝑖) = ∑ 𝑃(𝒚𝑢 = 𝑘′|𝒛𝑢 = 𝑘)𝑃(𝒛𝑢 = 𝑘|𝑢𝑖)

𝐾

𝑘=1

 

𝑃(𝒚𝑝 = ℓ′|𝑝𝑖) = ∑ 𝑃(𝒚𝑝 = ℓ′|𝒛𝑝 = ℓ)𝑃(𝒛𝑝 = ℓ|𝑝𝑖)

𝐿

ℓ=1

 

𝑃(𝑤𝑗
𝑖|𝑢𝑖 , 𝑝𝑖) = ∑ ∑ 𝑃(𝑤𝑗

𝑖|𝒚𝑢 = 𝑘′, 𝒚𝑝 = ℓ′)

𝐿

ℓ

𝐾

𝑘

𝑃(𝒚𝑢 = 𝑘′|𝑢𝑖)𝑃(𝒚𝑝 = ℓ′|𝑝𝑖) 

 

Inference and learning 

Assuming independent data items in 𝒟, the log-likelihood of the model is: 

ℒ =  ∑ log 𝑃(𝑟𝑖|𝑢𝑖 , 𝑝𝑖)

𝑅

𝑖=1

 

We will consider a simple model assuming independence of the words appearing in the review: 

𝑃(𝑟𝑖|𝑢𝑖 , 𝑝𝑖) = ∏ 𝑃(𝑤𝑗
𝑖|𝑢𝑖 , 𝑝𝑖)

𝑆𝑖

𝑗=1

 

Hence, the log-likelihood reads: 

ℒ = ∑ ∑ log 𝑃(𝑤𝑗
𝑖|𝑢𝑖 , 𝑝𝑖)

𝑆𝑖

𝑗=1

𝑅

𝑖=1

 

 

 



 

 

 

 

 

Finally, we obtain: 

ℒ =  ∑ ∑ log [ ∑ ∑ 𝑃(𝑤𝑗
𝑖|𝒚𝑢 = 𝑘′, 𝒚𝑝 = ℓ′)

𝐿

ℓ′=1

𝐾

𝑘′=1

𝑆𝑖

𝑗=1

𝑅

𝑖=1

 

          ∑ 𝑃(𝒚𝑢 = 𝑘′|𝒛𝑢 = 𝑘)𝑃(𝒛𝑢 = 𝑘|𝑢𝑖)

𝐾

𝑘=1

∑ 𝑃(𝒚𝑝 = ℓ′|𝒛𝑝 = ℓ)𝑃(𝒛𝑝 = ℓ|𝑝𝑖)

𝐿

ℓ=1

] 

For training, we use Expectation-Maximization (EM) algorithm. The EM algorithm is a standard 

iterative approach for soft assignment of points to latent classes. In this way, through maximum 

likelihood estimation (MLE), each item has a probability of belonging to a specific latent class. It 

runs iteratively two steps, Expectation (E) and Maximization M), until convergence. 

3.1.1 E-step 

In the E-step, the algorithm evaluates the current estimates of the model parameters by computing 

the expected values of the latent variables. 

Note that we have two levels of hidden variables. First, given the user and the product they 

reviewed, we do not know which latent classes 𝒛𝑢 and 𝒛𝑝 represent the (user, product) couple 

when writing the review. Second, we know that the underlying latent classes 𝒛𝑢 and 𝒛𝑝 may have 

been disrupted to latent classes 𝒚𝑢 and 𝒚𝑝 before producing the review, but we do not know their 

identity. To simplify mathematical notation, we will denote 𝒛𝑢 = 𝑘, 𝒛𝑝 = ℓ, 𝒚𝑢 = 𝑘′ and 𝒚𝑝 = ℓ′ 

as 𝒛𝑢
𝑘, 𝒛𝑝

ℓ , 𝒚𝑢
𝑘′ and 𝒚𝑝

ℓ′. In the E-step, the algorithm computes the expected values of latent variables 

using the current values of model parameters. 

 

 

𝑃̂(𝒛𝑢
𝑘 , 𝒛𝑝

ℓ |𝑤, 𝑢, 𝑝) = 

=
𝑃(𝒛𝑢

𝑘|𝑢)𝑃(𝒛𝑝
ℓ |𝑝) ∑ ∑ 𝑃(𝑤|𝒚𝑢

𝑘′
, 𝒚𝑝

ℓ′
)𝑃(𝒚𝑢

𝑘′
|𝒛𝑢

𝑘 )𝑃(𝒚𝑝
ℓ′

|𝒛𝑝
ℓ )ℓ′𝑘′  

∑ ∑ 𝑃(𝒛𝑢
𝑘′′|𝑢)𝑃(𝒛𝑝

ℓ′′|𝑝) ∑ ∑ 𝑃(𝑤|𝒚𝑢
𝑘′

, 𝒚𝑝
ℓ′

)𝑃(𝒚𝑢
𝑘′

|𝒛𝑢
𝑘′′)𝑃(𝒚𝑝

ℓ′
|𝒛𝑝

ℓ′′)ℓ′𝑘′ℓ′′𝑘′′

 

 

 

𝑃̂(𝒚𝑢
𝑘′, 𝒚𝑝

ℓ′|𝑤, 𝑢, 𝑝) = 

=
𝑃(𝑤|𝒚𝑢

𝑘′
, 𝒚𝑝

ℓ′
) ∑ 𝑃(𝒚𝑢

𝑘′
|𝒛𝑢

𝑘)𝑃(𝒛𝑢
𝑘|𝑢) ∑ 𝑃(𝒚𝑝

ℓ′
|𝒛𝑝

ℓ )𝑃(𝒛𝑝
ℓ |𝑝)ℓ𝑘  

∑ ∑ 𝑃(𝑤|𝒚𝑢
𝑘′′

, 𝒚𝑝
ℓ′′

) ∑ 𝑃(𝒚𝑢
𝑘′′

|𝒛𝑢
𝑘)𝑃(𝒛𝑢

𝑘|𝑢) ∑ 𝑃(𝒚𝑝
ℓ′′

|𝒛𝑝
ℓ )𝑃(𝒛𝑝

ℓ |𝑝)ℓ𝑘ℓ′′𝑘′′

 

 

3.1.2 M-step 

In the M-step, the algorithm maximizes the expectation computed in the E-step by re-estimating 

the model parameters. To do so, we need to specify the distributions for 𝑃(𝒛𝑢
𝑘|𝑢), 𝑃(𝒛𝑝

ℓ |𝑝) and 

𝑃(𝑤|𝒚𝑢
𝑘′

, 𝒚𝑝
ℓ′

). It looks natural to model these parameters as multinomial distributions.  

 



 

 

 

 

 

Thus, we assume: 

 

 

𝑃(𝒛𝑢|𝑢) ∼ Multinomial 

𝑃(𝒛𝑝|𝑝) ∼ Multinomial 

𝑃(𝑤|𝑢, 𝑝) ∼ Multinomial 
 

 

The updated equation for 𝑃(𝑤|𝒚𝑢
𝑘′

, 𝒚𝑝
ℓ′

) is: 

𝑃(𝑤|𝒚𝑢
𝑘′

, 𝒚𝑝
ℓ′

) =
∑ 𝑃̂(𝒚𝑢

𝑘′, 𝒚𝑝
ℓ′|𝑤, 𝑢, 𝑝)(𝑢,𝑝)∈𝓑(𝑤)

∑ ∑ 𝑃̂(𝒚𝑢
𝑘′, 𝒚𝑝

ℓ′|𝑤′, 𝑢, 𝑝)(𝑢,𝑝)∈𝓑(𝑤′)𝑤′

 

 

where 𝓑(𝑤) is the set of (user, product) couples associated with the word 𝑤. 

 

Denoting the set of words used by user 𝑢 to review product 𝑝 by 𝓦(𝑢, 𝑝) we obtain the updated 

equations for 𝑃(𝒛𝑢
𝑘|𝑢)and 𝑃(𝒛𝑝

ℓ |𝑝) as: 

𝑃(𝒛𝑢
𝑘|𝑢) =

∑ ∑ ∑ 𝑃̂(𝒛𝑢
𝑘 , 𝒛𝑝

ℓ |𝑤, 𝑢, 𝑝)ℓ𝑤∈𝓦(𝑢,𝑝)𝑝

∑ |𝓦(𝑢, 𝑝)|𝑝
 

 

𝑃(𝒛𝑝
ℓ |𝑝) =

∑ ∑ ∑ 𝑃̂(𝒛𝑢
𝑘 , 𝒛𝑝

ℓ |𝑤, 𝑢, 𝑝)𝑘𝑤∈𝓦(𝑢,𝑝)𝑢

∑ |𝓦(𝑢, 𝑝)|𝑢
 

 

3.1.3 Topographic initialization with SOM 

The successful application of the EM algorithm depends on the initial position in the parameter 

space, since the algorithm is strongly sensitive to parameter initialization. We follow an approach 

similar to the one presented in [28]. Differently from their work, where the SOM was run on a 

dataset of user ratings, we run two different instances of SOM (one for users and one for products) 

using the review information. The number of nodes in SOM is equal to the number of latent classes, 

i.e. 𝐾 for users and 𝐿 for products. We denote by 𝒱 the vocabulary set. For each user 𝑢, there is a 

|𝒱|-dimensional vector 𝒗 associated. Each vector dimension represents a word 𝑤 in the vocabulary 

and the corresponding value is the term frequency, i.e. how many times the user has written a 

review using that word. The analogous reasoning is valid for products. In the latter case, each 

vector dimension represents how many times a word 𝑤 was used for reviewing the product 𝑝. 

After training the two instances of SOM, the user and product conditional latent priors, i.e. 

𝑃(𝒛𝑢
𝑘|𝑢) and 𝑃(𝒛𝑝

ℓ |𝑝) respectively, are computed as follows. If the user 𝑢 belongs to the cluster 

defined by the node 𝑘 ∈ 𝒵𝑢 = {1, … , 𝐾} of the SOM, then we softened the binary membership 

using the following transformation:   

𝑃(𝒛𝑢
𝑘|𝑢) =  {

𝐴
(1 − 𝐴)/((𝐾 − 1)

        𝑖𝑓 𝑢 ∈ 𝑘

        𝑖𝑓 𝑢 ∉ 𝑘
  

 



 

 

 

 

 

In this way, if the user 𝑢 belongs to the cluster 𝑘, 𝑃(𝒛𝑢
𝑘|𝑢) is 𝐵 > 1 times higher than 𝑃(𝒛𝑢

𝑘′|𝑢) 

for all the other 𝑘′ ∈ 𝒵𝑢. Thus, 𝐴 = 𝐵/(𝐾 − 1 + 𝐵). The product conditional latent prior can be 

generated in an equivalent manner by changing the parameters accordingly. 

The empirical distribution for word patterns 𝑃(𝑤|𝒚𝑢
𝑘′

, 𝒚𝑝
ℓ′

) is then computed as: (a) to introduce 

the topology, we follow the steps described in the corresponding subsection to get (possibly 

corrupted) class indices 𝒚𝑢
𝑘′

 and 𝒚𝑝
ℓ′

 for all users 𝑢 and products 𝑝; (b) we denote with 𝑁(𝑤, 𝑘′, 𝑙′) 

the number of times the word 𝑤 has been used by users belonging to the latent class 𝑘′ to review 

products that belong to the latent class 𝑙′. The empirical distribution is estimated as: 

𝑃(𝑤|𝒚𝑢
𝑘′

, 𝒚𝑝
ℓ′

) =  
𝑁(𝑤, 𝑘′, 𝑙′) + m

𝑚𝑉 + ∑ 𝑁(𝑤′, 𝑘′, 𝑙′)𝑤′∈𝒱  
 

 

Due to sparseness, we apply a Laplace correction for smoothing the empirical estimates. The 

parameter $m$ is a positive number and, in this case, $m=1$. For further details, we refer the 

reader to \cite{Polcicova2004}. 

3.2 Experimental analysis 

After running the EM algorithm, we have the estimates of the conditional distributions 𝑃(𝒛𝑢
𝑘 |𝑢) 

and $ 𝑃(𝒛𝑝
ℓ |𝑝))$ for all users and products in our dataset. These quantities represent the probability 

assignments of the items to their respective latent classes. 

As in 2.3, we evaluate our method with the popular Amazon Product Data dataset. Again, we focus 

on the 5-core version of the data sets and we follow a similar preprocessing procedure. Given the 

model parameters estimated in Section 3.1, we can analyze user and product latent class word 

distributions. For each latent class, we can compute the corresponding word distribution and get 

an insight of the user preferences or product characteristics. The word distribution for each user 

latent class is: 

𝑃(𝑤, 𝒚𝑝
ℓ′

|𝒚𝑢
𝑘′

) =  𝑃(𝑤|𝒚𝑢
𝑘′

, 𝒚𝑝
ℓ′

)𝑃(𝒚𝑝
ℓ′

) ⟹
1

𝐿
∑ 𝑃(𝑤|𝒚𝑢

𝑘′
, 𝒚𝑝

ℓ′
)

𝐿

ℓ′=1

 

since the target distribution is not related to any product, this is a marginal distribution over all the 

product latent classes (i.e. the term 1 𝐿⁄  =in the equation). 

Equivalently, the word-distribution for each product latent class can be derived as follows: 
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The visualization of the most probable words associated with each latent class help us to evaluate 

the results. For visualization purposes, for each latent class word distribution, we extract the 10 

most probable words. In theory, from this word list, one should be able to infer the main topic of 

the associated latent class. Additionally, given the assumptions of our model, we should be able to 

recognize an organization of the latent classes induced by the grid topology. Classes with similar 

topics should lie close to each other in the grid.  



 

 

 

 

 

In Table 4, we can see an example of the latent organization of product classes for the Automotive 

category. 

 

 
Table 4 - Product latent class word-distributions - Automotive category. 

 
There are clear patterns of the most probable words associated with latent classes. Note the 

topological organization of the latent classes: words patterns are similar for classes that are close 

to each other. For example, adjacent classes at the top left of the grid refer to lighting accessories, 

while going down to the bottom left we can induce that the latent classes refer to electrical and oil 

system tools. On the right part of the grid, instead, we have latent classes referring to cleaning 

accessories. Knowing the assignment probabilities of a sampled item, we can analyze the most 

probable latent classes and evaluate the corresponding word distributions to get an insight about 

the item characteristics, making the results more interpretable. 

 

 

 



 

 

 

 

 

4 Discussion and future works 

As anticipated, user-generated data include different types than just the textual one. For this reason, 

to comprehensively investigate real-world scenarios, we want to employ other types of data that 

can model different real-world situations. In particular, we will focus our attention on time series 

and, more specifically, on event point processes since they can naturally model many real-world 

dynamics. In the next subsections, we will review the current state-of-the-art in this area and we 

will investigate potentially new ways for improving event sequence modeling. 

4.1 State of the art and problem statement 

Sequences of discrete events in continuous time can naturally model many real-world scenarios 

(e.g. medical events, customer behaviors, social media actions). In this scenario, the events are 

also usually correlated. A single event, or a pattern of events, may help to cause (excitation) or 

prevent (inhibition) future events. Discover such patterns can help us describe complicated 

dynamics in real-world applications and to predict which type of event will happen next at what 

time. To this end, the intensity of the different types 𝑘 of event at the time 𝑡 is modeled using the 

so-called intensity function 𝜆𝑘(𝑡). From the basic model for event streams, the Poisson process 

(which assumes that events occur independently of one another), many steps have been made to 

model the complex real-world patterns using 𝜆𝑘(𝑡). In [29], the authors propose a neural self-

modulating multivariate process where the intensities of multiple event types evolve according to 

a new continuous-time LSTM. In this way, they overcome the unrealistic assumptions of the 

Hawkes processes (where the probability of future events can be raised by the past events only in 

a positive, additive way) by capturing effects that can be even subtractive.  

 

 
Figure 6 – Example of event time series (two types of event) with inhibition/exhibition effects taken from [29]. 

 
Following similar directions, other works (e.g. [30] [31] [32]) attempted to model this type of event 

streams. In [30], similarly to [29], the intensity function is defined as a nonlinear function of the 

history, and use a recurrent neural network to automatically learn a representation of influences 

from the event history. In [32], the authors propose a nonparametric model based on Gaussian 

processes. However, none of them attempt to generate interpretable models/predictions. Inspired 

by this limitation and by the works on interpretable time series forecasting [33] [34] [35] [36] we 

will attempt to develop an interpretable model for multivariate temporal time series. Modeling this 

type of event streams seems natural and useful in many applied domains, and we believe is 

important to work in this direction to develop interpretable frameworks in this scenario. 



 

 

 

 

 

With the advent of deep learning, as written in [34], CNNs have been considered state-of-the-art 

for multivariate time series classification due to their ability to learn meaningful representations 

from sequential data without the need for manual feature engineering (e.g. [29] [30]). However, as 

many machine learning methods, these networks are considered as black box models. The authors 

propose a method for achieving explainable deep neural network predictions by using a gradient-

based approach for generating saliency maps. However, these methods are mostly used in vision 

and language tasks, and their applications to time series data is relatively unexplored [36]. Based 

on the extensive experiments of the authors, [36] reports that saliency methods tend to fail 

providing high-quality interpretation in time series data, and proposes a new approach to improve 

the quality of the saliency methods. In detail, they propose a two-step temporal saliency rescaling 

(TSR) that works as follows: (i) they first calculate the time-relevance score for each time step; (ii) 

they calculate a feature-relevance score for each feature in each time step having a time-relevance 

score higher than a certain threshold. Figure 7 shows the generated saliency maps when applying 

the two-step TSR approach. 

 
Figure 7 - Example of saliency maps on synthetic data and time series MNIST produced by the approach proposed in [36]. 

4.2 Future directions 

Differently from the state-of-the-art approaches mentioned above, in [37] the authors propose a 

framework for modeling the intensity function of point processes involving also dense numerical 

time series via RNNs. Indeed, in real-world applications, the event time series are usually 

associated with observable numerical time series that often reveal the background status of the 

system. For example, in medical applications, we could have patients’ monitored measurements 

(e.g. heart rate, blood pressure, glycaemia) that could help us predicting the next event (e.g. a 

complication). In online retailers and social networks, we could have additional information about 

users and items that could help unveil the next possible action, e.g. an online purchase. Following 

a similar approach, we also aim to integrate the available additional information (in the form of 

numerical time series) during the learning phase for improving the predictive performances of our 

model. Additionally, inspired by the works on interpretable time series forecasting, we aim at 

developing an interpretable model for event point processes. In this way, we will be able to 

highlight the importance of the input features in model predictions for each event and we would 

be able to understand and explain the dynamics of the involved system. As direct consequence, 

the better understanding of the underlying system should also improve the prediction task, creating 

an understandable learning system. 



 

 

 

 

 

5 Conclusions 

This report introduces the essential components for interpretable modeling of user-generated data. 

Given the nature of user-generated data, we can categorize our contribution into two main 

branches: the first one where we exploit the user-generated textual information (e.g. reviews), and 

the second one where we focus our attention on user-associated time series. We provided details 

on our developed approaches, ongoing works, and future ideas. We reported the results and 

introduced potential applications in real-world applications. The results demonstrate the ability of 

our models of exploiting the available user-generated data in favor of interpretability while still 

performing well on prediction tasks.  

 

In section 2, we present an approach that uses the extra textual information associated with the 

nodes to learn human-understandable explanations for the corresponding latent representations. 

To strengthen the interpretability of the results, the model learns simultaneously node embeddings 

and textual explanations during the training phase. Additionally, the introduction of node cluster 

embedding enables the model to learn the patterns among nodes, ratings and textual information. 

In this way, we learn the discrete structures of the graph data and the text-based explanations in an 

elegant way. Finally, our model is flexible since it can be included with different learning tasks. 

In our case, since we have the rating information, we perform a rating prediction task, but it can 

be different. The promising results in the qualitative analysis shows the capacity of the model on 

generating human-understandable explanation while competitively performing well on a 

prediction task. For future work, it would be interesting to extend the work by integrating the 

polarity of the words and employing the interpretation for downstream tasks, such as human-

understandable recommendation. 

 

In section 3, we present a probabilistic framework for the organization of user and latent classes 

based on the review information. The results clearly demonstrate the ability of our proposed model 

to interpret the latent classes of users and products and to organize them in a structured way. 

Potentially, to further investigate the results, one could select a user latent class, and retrieve the 

corresponding product class word distributions to see how the word distributions change when 

fixing a specific user latent class (and vice versa, starting from a product latent class). We are 

currently working on an extension of the work, in order to make our probabilistic model generative. 

In this way, given an unknown user that reviewed a product in our dataset, we would be able to 

learn the user latent class assignments given the review text, using the posterior distribution.  

Most of the works in recommendation focuses on modeling the user preferences by means of the 

rating information. However, the most nuanced and sophisticated medium to express our feelings 

is our language [38]. For this reason, we believe is important to organize the review information 

by means of two-dimensional grids for user and product latent classes. There are several 

motivations for this: first, there is a strong correlation between reviews and ratings; the review text 

is indeed the explanation to justify a given rating. Second, the visualization in a two-dimensional 

grid of word patterns provide an accessible way for exploring latent features of users and products 

using complicated and large amounts of textual data. Last, since the lower-dimensional latent 

representations are a good approximation of the textual input space and, in turn, this is strictly 

related to ratings, we believe that we could achieve good results in the rating prediction using the 



 

 

 

 

 

resulting latent features as input. Further experiments will follow in this direction. Finally, to 

facilitate the investigation of the results, we aim at creating an interactive visualization tool that 

could help the experts to retrieve interesting patterns of the items in order to analyze the results 

autonomously.  

 

In both cases, as said at the beginning, the experimental setting is an e-commerce system, but the 

model could be integrated with other real-world scenarios, as long as some textual information is 

available. For future work, in line with the objectives of the ECOLE project, we aim at integrating 

our findings into a synergic multi-domain optimization framework. 
 

In conclusion, the challenge presented by the interpretability of machine learning methods (in 

particular, deep learning ones) is a barrier preventing their serious adoption in real-world 

applications [36]. Many critical applications involve textual data and time series, but using just 

accurate and fast algorithms is not sufficient in these cases. To support humans in a cooperative 

process with AI, we need to develop models and techniques that are human-understandable. Our 

work aims to contribute on solving this problem, and the results of our findings will help to increase 

human trustiness and to ease the application of the proposed models where possible. In this way, 

filling the gap between humans and AI, the evaluation process of AI-based applications will be 

faster, easier and more reliable. 
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