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Executive Summary 
 

This document provides a concise report on the research invested and the scientific contributions 

made regarding the work package 3.2 in ECOLE. This work package deals with the issue of big 

data analytics through deep structured models and representation learning in the context of 

Engineering & ICT applications. In ECOLE, the idea of learning high-level representation with 

the help of supplementary domain information was proposed. A systematic empirical investigation 

was conducted to validate the theory. The findings suggest that the deep structured models trained 

with the help of supplementary domain information were 1.73 % better on average than the state-

of-the-art models for multi-step-ahead time series forecasting. 

 

Major Achievements 
 

Major scientific achievements regarding the work package 3.2 are presented. In particular, short 

answers to some of the most important research questions are described: 
 

Research Questions Discussion 

 

Can supplementary domain information be 

utilized to find useful representation in the 

data?  

Our findings indicate the practical 

applicability of supplementary domain 

information for learning high-level 

abstractions in the temporal ICT data in the 

health sector. (cf. Fig. 4). 

 

How effective are the high-level 

representations for better modeling of the 

temporal data? 

Models trained with the help of these 

representations (which are learned through 

supplementary domain information) are 1.73 

% better on average than the state-of-the-art 

deep generative models (cf. Fig. 5 and Table 

III).  

 

 

 

 

Can the results be generalized to other 

domain-rich application, e.g., financial and 

economic signal-processing? 

Similar results can be expected. The reason 

for this is that supplementary domain 

information links the temporal data in the 

form of a graph, e.g., patients with similar 

disease diagnostic are likely to have similar 

temporal features in their ICU stay, thereby 

connected to each other. Then, the temporal 

features of one patient can be utilized to help 

predict the temporal features of similar 

patient(s) (cf. Tables IV and Fig. 5). 

 

 

 

 

 

 

 



 

 

1. Introduction 

 
ECOLE aims at shortening the product-development cycle, reducing the resource consumption 

during the complete process, and creating more balanced and innovative products. One of the most 

important challenges ECOLE undertakes is Mining & Learning Temporal Data in the context of 

Engineering & ICT Applications. To model the temporal data in these domains, ECOLE proposes 

to learn high-level abstractions in data which can provide more robust and compact representations 

than the data space. This is intuitive for two reasons: 

 

1) Temporal data-sets in these domains are marked by irregular, highly-sporadic and strongly-

complex structures, and are consequently difficult to model by traditional state-space 

models. Therefore, learning high-level abstractions in data can provide more robust 

representations which can be employed for downstream learning tasks, e.g., forecasting, 

classification. 

2) Temporal data-sets in these domains are characterized by loads of supplementary domain 

information. This supplementary information can be useful for learning high-level 

encodings and latent correlations in the data. 

This report is to reflect the work and research invested in the work package 3.2 which embroils 

the issue of big data analytics in ICT and Engineering applications with the help of deep structured 

models and representation learning. In this report, we therefore summarize the following scientific 

findings and research outcomes pertaining to the work package 3.2: 

 

• Processing of temporal data with the help of deep structured models such as Recurrent 

Neural Networks, Variational Autoencoders, and Variational Recurrent Neural Networks 

(Sec. 2). We concisely describe these models and their working mechanism.  

• We provide a case study related to the ICT data in health sector. The case study augments 

the Variational Recurrent Neural Networks by learning high-level abstractions in the data 

with the help of supplementary domain information. We demonstrate that this 

augmentation improves the forecasting accuracy of temporal data on average by 1.73 %. 

The following publication in the ECOLE is contributing to this report: 

 

S. Ullah,  Z. Xu,  H. Wang, S. Menzel, B. Sendhoff and T. Bäck, " Exploring Clinical Time Series 

Forecasting with Meta-Features in Variational Recurrent Models," in International Joint 

Conference on Neural Networks (IJCNN), Glasgow, 2020, IEEE. 

 

 

 

 
 

  



 

 

2. Processing of Temporal Data  

 
In the past, processing of temporal data relied heavily on state-space models which were typically 

linear and were suited for univariate time series, although multivariate non-linear extensions of 

such models exist [1]. These methods required specifications of trends, seasonality, cyclical effects 

and shocks in time-series processing. As a result, these methods had higher interpretability. 

However, this interpretability (usually) came at the cost of the model accuracy since such models 

lacked the dynamic and complex nature of the multivariate time-series extracted from modern 

ubiquitous systems such as economic transaction processing systems and electronic health record 

(EHRs) systems. In this report, we discuss processing of temporal data in the context of deep 

structured models. This is since with the advent of deep learning [2], many methodologies have 

been proposed to employ deep structured models, e.g., RNNs, for time-series processing. Hybrid 

approaches [3] to combine state-space models and deep structured models have also been 

proposed. Note however that vanilla deep learning models have deterministic hidden states and 

lack the intrinsic stochasticity found in the latent variable models such as Hidden Markov Models 

(HMMs) and Kalman Filters. Recent studies [4] [5] have argued to incorporate some stochasticity 

in deep learning models while modeling complex sequences which can improve the generalization 

capability of these models. 

 

On the other hand, variational autoencoders (VAEs) [6] have been proposed to capture high-

variability in complex data-sets. VAEs are a class of deep latent-variable models which learn the 

complex intractable posterior over the data space by employing the variational inference (VI) and 

the reparameterization trick. However, vanilla VAEs are suited for non-sequential data-sets only. 

Recently in [5], the authors extend the variational autoencoders (VAEs) for highly-variable 

sequential data which is named variational recurrent neural network (VRNN). 

 

A variational recurrent neural network (VRNN) contains a variational autoencoder (VAE) at each 

time-step 𝑡 which is conditioned on the previous hidden state ℎ𝑡−1 of an RNN, thus, modelling the 

sequential structure in the data. In the same paper, the significance of this model is demonstrated 

on various sequential data-sets. VRNNs, however, have rarely been adopted for time series 

forecasting tasks. Recently in [7], the authors evaluate VRNNs for time series forecasting on 

various synthetic and one real benchmark data-sets against several neural baselines including 

recurrent neural network with extended Kalman filters (RNN-EKFs) [8], robust echo state state 

networks (RESNs) [9] and co-evolutionary multi-task learning (CMTL) [10], and conclude that 

VRNNs outperform all the baselines on most data-sets.  

 
2.1. Recurrent Neural Networks 

 

Recurrent Neural Networks (RNNs) [2] [11] [12] are a family of neural networks (NNs) which are 

specialized to model the temporal correlations in the data. In particular, a recurrent neural network 

(RNN) receives a variable-length input sequence 𝑥 = (𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑇); which it processes by 

computing the so-called hidden state ℎ𝑡 as a function of the current input 𝑥𝑡 at time 𝑡 and the 

previous hidden state ℎ𝑡−1 as: 

 

 

 ℎ𝑡 = 𝑓(𝑥𝑡, ℎ𝑡−1;  𝜃) , (1) 



 

 

 

 

where 𝑓 is a non-linear activation function, and 𝜃 is the associated set of parameters to be 

optimized. The gated implementations of 𝑓 result in networks known as long short-term memory 

(LSTM) [13] and gated recurrent unit (GRU) [14] which regulate the flow of information and 

prevent issues known as vanishing and exploding gradient problems [15]. RNNs model sequences 

by parameterizing a factorization of the joint sequence probability distribution as a product of the 

conditional probabilities such that: 

 

 

𝑝(𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑇) =  ∏ 𝑝(𝑥𝑡 | {𝑥𝑖}1≤𝑖<𝑡),

𝑇

𝑡=1

 

 

(2) 

 

and 

 

 𝑝(𝑥𝑡| {𝑥𝑖}1≤𝑖<𝑡) = 𝑔(ℎ𝑡−1 ;  𝜏)   (3) 

 

 

In Eqs. (2) and (3), 𝑇 corresponds to the sequence length, {𝑥𝑖}1≤𝑖<𝑡 denotes the set of inputs 

preceding 𝑥𝑡 and 𝑔 is a function mapping the hidden state ℎ𝑡−1 to the output conditional probability 

distribution parameterized by a set of parameters 𝜏. Note that due to the space limitation, {𝑥𝑖}1≤𝑖<𝑡, 

i.e., the set of the inputs preceding 𝑥𝑡 and similar notations, e.g., {𝑥𝑖}1≤𝑖<𝑇, are substituted with 

their compact representations, i.e., 𝑥<𝑡 in the remainder of the report. 

 
2.2. Variational Autoencoders 

 

A variational autoencoder (VAE) [6] is a deep latent-variable model to approximate the complex 

intractable posterior over the data space. A VAE uses a set of latent variables 𝑧 designed to capture 

the high-variations in the data by encoding and reconstructing the data; thereby, learning the global 

properties of the data-space. More specifically, a VAE consists of two neural networks: an 

inference network (the encoder), and a generative network (the decoder) respectively. The encoder 

encodes the input 𝑥 to the latent variable 𝑧, and the decoder maps this latent variable 𝑧 back to 

reproduce 𝑥. The VAE treats the conditional probability distribution 𝑝(𝑥|𝑧) as highly-flexible 

function approximation of 𝑥. However, the mapping from 𝑧 to 𝑥 cannot be implemented because 

of the intractable posterior 𝑝(𝑧|𝑥) on the latent variable. The VAE thus introduces the variational 

approximation 𝑞(𝑧|𝑥) of the intractable posterior 𝑝(𝑧|𝑥). The approximate posterior 𝑞(𝑧|𝑥) has 

highly-flexible form and its parameters are generated by the inference, i.e., encoder network. 

Lastly, the variational approximation 𝑞(𝑧|𝑥) of 𝑝(𝑧|𝑥) enables the use of Evidence Lower Bound 

(ELBO) (variational lower bound) as: 

 

 

                          𝑙𝑜𝑔 𝑝(𝑥) ≥ −𝐾𝐿(𝑞(𝑧|𝑥)|| 𝑝(𝑧)) + 𝔼[ 𝑙𝑜𝑔 𝑝(𝑥|𝑧)], (4) 

 

 

where the expectation 𝔼[𝑙𝑜𝑔 𝑝(𝑥|𝑧)] is with respect to 𝑧 ∼ 𝑞(𝑧|𝑥), and 𝐾𝐿(𝑄||𝑃) is the Kullback-

Leibler divergence [16] between two probability distributions 𝑄 and 𝑃. In [6], the variational 



 

 

posterior 𝑞(𝑧|𝑥) is modelled by a Gaussian 𝒩(μ, 𝑑𝑖𝑎𝑔(σ2)) where the parameters μ and σ are the 

outputs of the inference network and 𝑑𝑖𝑎𝑔 corresponds to the diagonal covariance structure of the 

Gaussian distribution. The prior 𝑝(𝑧) is assumed to be a standard Gaussian distribution. The 

training process focuses on maximizing ELBO in Eq. (4) which yields the optimal parameters for 

the inference and generative networks. A low variance estimator can be substituted with the help 

of the reparameterization trick 𝑧 = μ + σ ⊙ ϵ; where ϵ ∼ 𝒩(0, 𝐼) is a vector of standard Gaussian 

variables and ⊙ denotes the element-wise product: 

 

 

                         𝔼[𝑙𝑜𝑔 𝑝(𝑥|𝑧)] = 𝔼[𝑙𝑜𝑔 𝑝(𝑥|𝑧) = 𝜇 + 𝜎 ⊙ 𝜖], (5) 

 

 

where the expectation 𝔼[𝑙𝑜𝑔 𝑝(𝑥|𝑧)] on the left-hand side is with respect to 𝑧 ∼ 𝑞(𝑧|𝑥), and the 

expectation on the right-hand side is with respect to 𝜖 ∼ 𝒩(0, 𝐼).  

 
2.3. Variational Recurrent Neural Networks 

 

A variational recurrent neural network (VRNN) [5] is the extension of a standard VAE discussed 

above to the cases with sequential data. It is a combination of an RNN and a VAE as described in 

Eqs. (1) and (5) respectively. More specifically, a VRNN employs a VAE at each time-step 𝑡. 

However, the prior on the latent variable 𝑧𝑡 of this VAE is assumed to be a multivariate Gaussian 

whose parameters are computed from the previous hidden state ℎ𝑡−1 of the RNN such that: 

 

 

  𝑧𝑡 ∼ 𝒩 (μ0,𝑡, 𝑑𝑖𝑎𝑔(σ0,𝑡
2 )) , [μ0,𝑡,  σ0,𝑡] = φτ

prior(ℎ𝑡−1), (6) 

 

In Eq. (6), μ0,𝑡 and  𝜎0,𝑡 are the parameters of the prior 𝑝(𝑧𝑡), and φτ
prior

 refers to a non-linear 

function such as a feed-forward neural network (FFNN) [2] [11] parameterized by a set of 

parameters 𝜏. The generating distribution in the decoder 𝑝(𝑥|𝑧) is conditioned on both 𝑧𝑡 and ℎ𝑡−1  

such that: 

 𝑥𝑡| 𝑧𝑡 ~ 𝒩 (𝜇𝑥,𝑡, diag(𝜎𝑥,𝑡
2 )), 

  

(7) 

where [𝜇𝑥,𝑡, 𝜎𝑥,𝑡] = 𝜑𝜏
dec(𝜑𝜏

𝑧(𝑧𝑡), ℎ𝑡−1), and μ𝑥,𝑡 and σ𝑥,𝑡 are the parameters of the generating 

distribution. The hidden state ℎ𝑡 of the RNN is updated as: 

 

 ℎ𝑡 = 𝑓(𝜑𝜏
𝑥(𝑥𝑡), 𝜑𝜏

𝑧(𝑧𝑡), ℎ𝑡−1;  𝜃) ,   (8) 

 



 

 

 

where 𝑓 is a non-linear activation function and 𝜑𝜏
𝑥, 𝜑𝜏

𝑧 and 𝜑𝜏
dec in Eqs. (6) and (7) are the FFNNs 

similar to 𝜑𝜏
prior

. The hidden state ℎ𝑡 is a function of both 𝑥≤𝑡 and 𝑧≤𝑡. The joint probability 

distribution of 𝑥 and 𝑧 thus becomes: 

 

 

 
 𝑝(𝑥≤𝑇 , 𝑧≤𝑇) = ∏ 𝑝(𝑥𝑡|𝑧≤𝑡, 𝑥<𝑡)𝑝(𝑧𝑡|𝑥<𝑡, 𝑧<𝑡)

𝑇

𝑡=1
. 

 

(9) 

 

 

We now discuss the inference, i.e., encoder network. Here, the approximate posterior 𝑞(𝑧𝑡|𝑥𝑡) is 

a function of both 𝑥𝑡 and ℎ𝑡−1 such as: 

 

 

  𝑧𝑡| 𝑥𝑡  ~ 𝒩 (𝜇𝑧,𝑡, diag(𝜎𝑧,𝑡
2 )),     (10) 

 

where [𝜇𝑧,𝑡, 𝜎𝑧,𝑡] = 𝜑𝜏
enc(𝜑𝜏

𝑥(𝑥𝑡), ℎ𝑡−1), and μ𝑧,𝑡 and σ𝑧,𝑡 are the parameters of the approximate 

posterior and 𝜑𝜏
enc is a FFNN same as 𝜑𝜏

prior
, 𝜑𝜏

𝑥, 𝜑𝜏
𝑧 and 𝜑𝜏

dec. Conditioning on ℎ𝑡−1, the posterior 

follows the factorization: 

 

 

Figure 1. The schematic view of a VRNN. The green line connections correspond to the 

computations involving the (conditional) prior and posterior on 𝑧𝑡 while the blue line 

connections show the computations involving the generative network, i.e., decoder. In addition, 

the computations for ℎ𝑡 are shown with red line connections. These connections depict the 

dependencies between the variables in Eqs. (6) – (10). Note that each connection/line is labelled 

according to the numbering of the equation it realizes. 



 

 

 
 𝑞(𝑧≤𝑇|𝑥≤𝑇) = ∏ 𝑞(𝑧𝑡|𝑥≤𝑡, 𝑧<𝑡)

𝑇

𝑡=1
. 

 

(11) 

 

 

The objective function to train both, inference and generative networks is to maximize ELBO 

based on the factorization in Eqs. (9) and (11); giving rise to the accumulative ELBO as: 

 

 

                 𝔼 [∑ (−𝐾𝐿(𝑞(𝑧𝑡|𝑥≤𝑡, 𝑧<𝑡)||𝑝(𝑧𝑡|𝑥<𝑡, 𝑧<𝑡) + 𝑙𝑜𝑔 𝑝(𝑥𝑡|𝑧≤𝑡, 𝑥<𝑡))]
𝑇

𝑡=1
      (12) 

 

 

where the expectation is with respect to 𝑧≤𝑇 ∼ 𝑞(𝑧≤𝑇|𝑥≤𝑇). The graphical representation of a 

standard VRNN is presented in Fig. 1. 

 

  



 

 

3. Time Series Forecasting for Clinical Monitoring System  

 
Due to great potential in improving the quality of healthcare service, the information and 

communication technologies (ICT) are widely used in the health sector. The clinical monitoring 

systems help the hospitals and doctors efficiently monitor health status of patients for a proactive, 

timely and effective diagnosis and treatment. Clinical time series generated from the monitoring 

systems are known for irregular, highly-sporadic and strongly-complex structures and are 

consequently difficult to model by traditional state-space models [1]. In this section of the report, 

we share some of the most important details from ECOLE [17], which tested the feasibility of 

learning high-level abstractions/meta-features from supplementary domain information in clinical 

settings. In ECOLE, we investigated the potential of applying VRNNs for forecasting clinical time-

series extracted from electronic health records (EHRs) of patients. We have already established in 

Section 2 that VRNNs combine RNNs and VI, and are state-of-the-art methods to model highly-

variable sequential data such as text, speech, time-series and multimedia signals in a generative 

fashion. In ECOLE, we proposed to incorporate multiple correlated time-series to improve the 

generalization capability, i.e., forecasting, of VRNNs. The selection of those correlated time-series 

was based on the similarity of the supplementary medical information, e.g., disease diagnostics, 

ethnicity and age, between the patients. We evaluated the effectiveness of utilizing such 

supplementary information with root mean square error (RMSE), on clinical benchmark data-set 

“Medical Information Mart for Intensive Care” (MIMIC III) [18] for multi-step-ahead prediction. 

We further performed subjective analysis to highlight the effects of the similarity of the 

supplementary medical information on individual temporal features, e.g., Systolic Blood Pressure 

(SBP), Heart Rate (HR), of the patients from the same data-set. Our results clearly showed that 

incorporating the correlated time-series based on the supplementary medical information could 

help improving the accuracy of the VRNNs for clinical time-series forecasting. Our conclusion 

was in line with the intuition of learning high-level abstractions/meta-features, and utilizing them 

for more robust training in deep structural models, and forms the mainstay of our research in work 

package 3.2. In the following of this section, we provide a sound theoretical understanding 

alongside practical details of our case study in ECOLE. 

 
3.1. Medical Information Mart for Intensive Care (MIMIC) 

 

Health care is one of the most exciting and challenging areas of information and communication 

technologies. The use of EHRs can significantly improve the existing health care systems since it 

can help identify early triage and risk evaluations [19] [20] [21] [22] for certain group of patients 

at very early stages of treatment. Most of the existing EHRs capture the temporal features for 

patients during their Intensive Care Unit (ICU) stay. Examples of such features include Heart Rate 

(HR), Oxygen Saturation Level (OSL), Body Temperature (BT) and Mean Blood Pressure (MBP) 

[23]. The set of these temporal signals can be used for further useful analysis such as phenotype 

classification [24] [25] [26], length-of-stay prediction [27] [28], risk-of-mortality prediction [27] 

and forecasting such signals for future time-steps. Unfortunately, these multivariate time-series are 

characterized by highly-irregular [29], sporadic and complex structures, and are consequently 

difficult to model by traditional methods. Note that irregular and sporadic multivariate time-series 

in this context refers to a time-series where the time intervals are not uniform and only a small 

subset of temporal features is observed at each time-step. Note also that the terms “temporal 

signals”, “temporal features”, “medical signals” and “time-series” have been used interchangeably 



 

 

throughout this report to refer to the same concept, i.e., time indexed variables of an individual 

patient which are observed in the ICU. In addition, terms “supplementary domain information”, 

“supplementary medical information”, “extra domain information” and “extra medical 

information” have also been used interchangeably throughout this report to refer to the non-

temporal subjective information about the patients, which is observed when the patient is admitted 

to the hospital or ICU. 

 

In ECOLE [17], we used “Medical Information Mart for Intensive Care” (MIMIC III) [18], which 

is publicly available and widely used benchmark data-set collected with a clinical monitoring 

system. MIMIC III is maintained in a relational database containing information of approximately 

60,000 ICU admissions. It contains information about the demographics of the patients [27] [30], 

the laboratory tests, keynote events during the ICU stay, medications and the temporal signals in 

the ICU, e.g., MBP and BT. Since MIMIC III is a highly-complicated data-set involving millions 

of events; it is important to follow a standard approach to preprocess the data which can be used 

for the downstream learning tasks. To this end, we follow the procedure of [27] which provides 

the benchmark preprocessing for MIMIC III.  

 

After following [27] for preprocessing; we are left with five different data-sets extracted from 

MIMIC III where each data-set corresponds to a specific learning task in [27] such as in-hospital-

mortality-prediction, decompensation-prediction, length-of-stay-prediction, phenotype 

classification and multitask learning. In ECOLE [17], we proceeded with the in-hospital-mortality 

data-set extracted from MIMIC III since it filters most of the issues such as the missing ids and the 

length of stay. Some of the important attributes of the preprocessed in-hospital-mortality data-set 

are presented in Table I, in which the first four columns report the description of the data, the 

number of patients, the number of ICU stays and the number of observed temporal features 

respectively. The last two columns report the number of continuous and categorical temporal 

variables, i.e., features, respectively. The train and test data-sets are split in the preprocessing step 

with a ratio of 85% - 15%. 

 

Table I. This table reports some of the most important attributes of the in-hospital-mortality 

data-set extracted from MIMIC III by following the preprocessing in [27]. 

 

Type Patients ICU Stays Variables Cont.’s Var. Cat Var. 

Train 15331 17903 17 13 4 

Test 2763 3236 17 13 4 

 

The in-hospital-mortality data-set contains the timeline of the first 48 hours of each patient’s stay 

in the ICU. It is clear from Table I, that some patients have been admitted to the ICU more than 

once. We remove such duplicates from the records and make sure that each patient has exactly one 

ICU record. Furthermore, to handle the sporadic nature of the data; we re-sample the temporal 

features to have exactly one entry in one hour resulting in a total of 48 entries for each patient same 

as [27]. In the case there is more than one entry in an hour, we take the mean and substitute it as 

the only entry of the hour to make the data consistent. This results in each patient represented by 

a matrix of 48 × 17. At this point, 83% of the entries in a patient’s time-series matrix are missing 

on average. The overall missing rate for all 17 temporal features is presented in Figure 2. to further 

highlight the issue. 



 

 

 

It can be observed from Fig. 2 that some features have extremely high missing rate and are 

consequently not fit for further analysis. As such, we remove them from the data and are left with 

only 6 temporal features, all of which are continuous with a missing rate of around 10 %. After 

this, we also remove those patients who have more than 10 % missing entries. Finally, we are left 

with 13400 patients in the training data-set and 2312 in the test data-set, and the missing rate is 

reduced to 10 %. The missing entries are then substituted by the column mean and thereupon we 

assume the complete information of each patient’s time-series which is a matrix of size 48 × 6 

where the six temporal features are Diastolic Blood Pressure (DBP), Heart Rate (HR), Mean Blood 

Pressure (MBP), Oxygen Saturation Level (OSL), Respiratory Rate (RR) and Systolic Blood 

Pressure (SBP) respectively. Apart from the temporal features, we also observe the disease 

diagnostics of each patient. This information is later used to compute high-level meta-features as 

discussed previously in the report. The histogram of the disease counts of all patients in the training 

and testing data-sets is presented in Fig. 3. 

 

 
 

Figure 2. Average (i.e., train and test both) missing rate % for all 17 temporal features is 

presented. Capillary refill rate and Height are the channels with maximum missing rate (99.6) 

%, while Heart Rate has lowest missing ratio (8.3) %. 

 



 

 

 
Figure 3. The histogram of disease counts for patients in the training and test data-sets is 

presented. The minimum and maximum number of disease(s) for an individual patient are 1 and 

39 respectively; for both train and test data-set. 

 
3.2. Learning of Meta-Features in Clinical Applications 

 

Clinical data-sets are characterized by loads of supplementary information accompanying the 

primary data. Such supplementary information may contain details about the patients, the 

laboratory tests, and the working condition of the hospitals and ICUs. Some of this information 

may be useful for the clinical analysis, early triage, risk assessment, and a better understanding 

about the ongoing treatment. Thus, it is critical to incorporate such supplementary information for 

tasks such as temporal signal forecasting, risk assessment, mortality classification for critical 

patients, phenotype classification and length-of-stay-prediction. However, there is a lack of 

common algorithmic approaches to exploit such domain information to improve the outcome of 

the downstream learning tasks. 

 

To conduct time-series forecasting for a particular patient; we propose to take a set of similar 

patients which is determined by some similarity criteria. Temporal signals extracted from these 

similar patients can be combined with the signals from the patient of interest to increase the 

robustness of the forecasting. This can improve the generalization ability of VRNNs for two 

reasons. Firstly, if the input time-series varies slightly; the model would be less prone to fail in 

reconstructing the time-series by including the correlated temporal signals of the similar patients. 

Secondly, the model utilizing the correlated temporal signals in the learning phase would be less 

likely to over-fit the data. For the similarity criterion, we choose the K-Nearest Neighbors (KNNs) 

[11] [12] with respect to the cosine similarity metric on disease diagnostics. 

 

We denote the set of correlated temporal signals for a patient at time 𝑡 with 𝑥𝑡
𝑟𝑒𝑙. The probability 

distributions for generative and inference networks are updated as: 

 

 
𝑝(𝑥≤𝑇 , 𝑧≤𝑇) = ∏ 𝑝(𝑥𝑡|𝑧≤𝑡 , 𝑥<𝑡, 𝑥<𝑡

𝑟𝑒𝑙)
𝑇

𝑡=1
. 𝑝(𝑧𝑡|𝑥<𝑡, 𝑧<𝑡, 𝑥<𝑡

𝑟𝑒𝑙) 
     

(13) 

 

 



 

 

 
𝑞(𝑧≤𝑇|𝑥≤𝑇) = ∏ 𝑞(𝑧𝑡|𝑥≤𝑡, 𝑧<𝑡, 𝑥≤𝑡

𝑟𝑒𝑙)
𝑇

𝑡=1
 

     

(14) 

 

 

where 𝑥<𝑡
𝑟𝑒𝑙 in Eq. (13) refers to the correlated temporal signals for a patient preceding time 𝑡. 

Similarly, 𝑥≤𝑡
𝑟𝑒𝑙 in Eq. (14) refers to the correlated temporal signals for a patient preceding and 

including time 𝑡. Note that in this way, all the expressions in Section 2.3 need to be updated by 

additionally conditioning on the multiple correlated temporal signals 𝑥𝑡
𝑟𝑒𝑙.  

 
3.3. Improving Forecasting Accuracy with Meta-Features in MIMIC 

 

The EHRs in the MIMIC III contain a variety of supplementary information, e.g., ethnicity, 

language, age and disease information, beyond the temporal features of the patients. However, 

most of such information is missing for the majority of the patients. Disease diagnostics is the only 

supplementary information present for each patient. As such, we only use the disease diagnostics 

as extra domain/supplementary information to compute the similarity between the patients. We 

convert each patient’s disease information into a binary vector of size 6961 where 6961 is the size 

of the set of all unique diseases in the entire data-set. After this, we find the set of 𝑘 most similar 

patients for each patient based on the cosine similarity of the disease vectors. We test the values 

of 𝑘 for 2, 3, 4, and 5 and find out that 𝑘 =  3 provides the best results. Thus, all the results 

mentioned in the following are achieved using k = 3 and 𝑥𝑡
𝑟𝑒𝑙 ∈ ℝd  where 𝑑 =  18. Once we have 

𝑥𝑡
𝑟𝑒𝑙 available, we implement and evaluate the model. 

 
3.4. Experimental Setup 

 

In ECOLE, we considered the following variants of VRNN:  

 

• Vanilla VRNN,  

• VRNN-I (without the conditional prior in Eq. (6)), 

• The proposed approaches: VRNN-S and VRNN-I-S (“S” stands for similarity), which 

implement the similar data 𝒙𝒕
𝒓𝒆𝒍 into VRNN and VRNN-I respectively. 

 

We do not include the other neural baselines such as recurrent neural network with extended 

Kalman filters (RNNEKFs) [8], robust echo state networks (RESNs) [9] and co-evolutionary 

multi-task learning (CMTL) [10] since we are fundamentally interested in robust and improved 

forecasting of VRNNs [5] by attempting to learn the local variations in the data. Table II reports 

the implementation details of all four models. In Table II, the first three columns show the model, 

the dimensions of 𝑥𝑡 and 𝑧𝑡 respectively. The fourth and fifth column describe the number of 

hidden layers and the size of each hidden layer accordingly. The last two columns report the batch 

size and the number of epochs respectively. The implementations of all four models are with GRUs 

and all temporal features are re-scaled between −1 and 1. The choice of the batch size is 100 based 

on [6]. For the choice of the number of hidden layers and their size, we try a variety of 

combinations including the previous settings in [27] [5] [16]. Our final choice is 50 for the hidden 

with in total 2 layers trained for 5 epochs. We found that at this setting all four models performed 

the best. Notably, this is different from any of the settings used in [27] [5] [16]. 



 

 

 

We are interested in evaluating our models for multi-step-ahead forecasting. We evaluate the 

models on one to ten-step ahead forecasting. For one-step-ahead forecasting, we train all the 

models on 47 time-steps and predict the last time-step. For two to five-step-ahead forecasting, we 

train all the models on 43 time-steps and predict the next two, three, four and five steps 

respectively. For six to ten-step-ahead forecasting, we train all the models on 38 time-steps and 

predict the next six, seven, eight, nine and ten steps. We evaluate all the models on Root Mean 

Square Error (RMSE): 

 

 

 RMSE = √
1

𝑀
∑ (𝑦𝑙 − 𝑦𝑙̂)2

𝑀

𝑖=1
 

     

(15) 

 

where 𝑦𝑙 and 𝑦𝑙̂ in Eq. (15) are the vectors representing the true and predicted values of all six 

temporal features for the patient 𝑙 and 𝑀 denotes the size of the test data-set. We now discuss the 

results obtained from the above experimental setup. 

 

3.5. Results 

 

In this section, we first report the average, i.e., for all the temporal variables, Root Mean Square 

Error (RMSE) on the test data-set for multi-step-ahead forecasting in Table II. In this table, the 

first column displays the step size for forecasting. The next four columns present the RMSE with 

rounded standard deviations using VRNN, VRNN-I (i.e., without the conditional prior in Eq. (6)), 

VRNN-S (i.e., VRNN employing 𝑥𝑡
𝑟𝑒𝑙), and VRNN-I-S (i.e., without the conditional prior and 

employing 𝑥𝑡
𝑟𝑒𝑙). The last two columns share the 𝑝 values resulting from the Mann-Whitney U 

test. These tests have the alternative hypotheses RMSE (VRNN-S) < RMSE (VRNN) and RMSE 

(VRNN-I-S) < RMSE (VRNN-I) respectively. These tests find if VRNNs utilizing 𝑥𝑡
𝑟𝑒𝑙 (also 

labelled M3 and M4 in the table) are significantly better than the respective baselines (which are 

labelled M1 and M2 respectively in the table). From Table II, it can be observed that VRNN-I-S 

achieves the lowest values of RMSE in all the ten cases. Furthermore, VRNN-S achieves the 

second lowest error in all the ten cases. Lastly, the rounded standard deviations in Table II are 

analogous for all four models. From the last two columns in Table II, we find out that in 6/10 cases; 

at-least one of VRNN-S and VRNN-I-S performs significantly better than the respective baseline 

as indicated by the 𝑝 values. 

 

We further perform a simple qualitative analysis to highlight the importance of 𝑥𝑡
𝑟𝑒𝑙 in robust and 

improved forecasting of VRNNs. We select three patients in the test data-set where VRNN-S and 

VRNN-I-S both achieve the lowest RMSE. For each of these patients, we select the ten most 

similar patients based on disease diagnostics and plot the corresponding cosine similarity values 

in the form of a heat map in Figure 4. This heat map verifies that our choice of 𝑘 =  3 in previous 

section is plausible since in all three cases, high similarity values are observed for the first few 

(i.e., two, three) related patients only. Moving forward with 𝑘 =  3; we report the information 

about the set of common diseases between our selected patients and their corresponding most 

similar patients in Table III. In this table, the first column shows the identity of each of the three 

selected patients. The second column reports the number of common diseases between that patient 

and its 𝑘 most similar patients. The third column shares the International Classification of 



 

 

Diseases, Ninth Revision (ICD9) codes for the corresponding diseases. The last column 

categorizes the respective ICD9 codes to the most appropriate disease family (i.e., Heart, Blood 

Pressure, Kidney, Respiratory) for better interpretation and analysis.  

 

 

 

Figure 4. This heat map visualizes the cosine similarity values between our patients of interest 

(P1, P2, and P3) and their corresponding ten most similar patients (S-P*) based on disease 

diagnostics. 

Table II. Average RMSE on all ten-steps-ahead forecasting tasks on test data is presented. The 

first column shows the step size, the next four columns share the RMSE for all four models. 

Given the alternative hypotheses 𝑯𝒂: M3 < M1 and 𝑯𝒂: M4 < M2 where M1, M2, M3 and M4 

correspond to the models in columns 2-5 respectively; two Mann-Whitney U tests are performed 

to find if the error differences are significant using standard 𝛂 = 𝟎. 𝟎𝟓 in both tests. 

 

Step 

Size 

VRNN 

(M1) 

VRNN-I 

(M2) 

VRNN-S 

(M3) 

VRNN-I-S 

(M4) 

Ha 

(M3<M1) 

Ha 

(M4<M2) 

1 0.01152 0.01209 0.01040 0.01034 3.5e-28 4.6e-64 

2 0.01047 0.01047 0.01042 0.01039 0.26 0.078 

3 0.01058 0.01059 0.01053 0.01050 0.23 0.045 

4 0.01062 0.01062 0.01057 0.01054 0.21 0.036 

5 0.01062 0.01063 0.01058 0.01055 0.22 0.021 

6 0.01071 0.01064 0.01062 0.01060 0.074 0.14 

7 0.01071 0.01064 0.01063 0.01060 0.056 0.12 

8 0.01073 0.01066 0.01064 0.01062 0.046 0.10 

9 0.01074 0.01066 0.01065 0.01062 0.042 0.09 

10 0.01073 0.01066 0.01065 0.01062 0.051 0.074 

 



 

 

 
 

Figure 5. One-step-ahead prediction on all six temporal features of the selected patients are 

presented. The six temporal features are Diastolic Blood Pressure (DBP), Heart Rate (HR), 

Mean Blood Pressure (MBP), Oxygen Saturation Level (OSL), Respiratory Rate (RR) and 

Systolic Blood Pressure (SBP) respectively. 

Table III. This table shares the information of the common diseases found between our selected 

patients and their 𝑘 most similar patients. 

 

ID Diseases ICD9 Category 

P1 4 414(.01, .9), 427.31, 428.0 Heart, Blood Pressure 

P2 3 785.52, 995.92, 584.9 High Blood Pressure, Kidney 

P3 2 507.0, 518.81 Respiratory, Blood Pressure 

 

After reporting the information about the common diseases, we plot the predictions of all four 

models on our patients of interest in Figure 5. This figure shares the one-step-ahead predicted 

values (re-scaled) for all six temporal variables for these patients. Considering the first patient (P1) 

in Figure 5; we observe that VRNN-S and VRNN-I-S outperform the baselines on Heart Rate (HR) 

which is related to the category of the most common diseases for that Patient in Table IV. Similarly 

analyzing the second patient (P2); we observe that VRNNS and VRNN-I-S outperform the 

baselines on Systolic Blood Pressure (SBP) which is strongly related to high blood pressure related 

diseases. Finally, the same analysis is performed for third patient (P3) where VRNN-S and VRNN-

I-S achieve superior predictions on Respiratory Rate (RR) and Systolic Blood Pressure (SBP). 

From Figure 5, we verify that the set of correlated temporal features 𝑥𝑡
𝑟𝑒𝑙 indeed help improving 

the forecasting accuracy of the VRNNs for clinical signals. This is especially true for the temporal 

features which are related to the set of the common diseases between the patients. We now move 

on to discuss the summary of our report along-side the future research line. 

 

 

 

 

 



 

 

4. Summary & Future Work  
 

This deliverable report focused on the research achievements regarding the task 3.2 about deep 

structured learning and model space learning for engineering and ICT data. The importance of 

learning high-level abstractions from data-sets can be hardly overstated, since these high-level 

meta-features can be utilized to foster the training process of a variety of downstream learning 

tasks. In this task, we investigated state-of-the-art approaches of temporal data analysis, and 

provided an overview of recent literature on time-series processing using deep structured models. 

In particular, we introduced a solid theoretical background for RNNs, VAEs and VRNNs from 

which we stemmed the leading edge research in the task 3.2.To meet the challenges in time series 

forecasting, we proposed a novel deep learning framework, which incorporates the high-level 

meta-features in training VRNNs to explore correlations among time series. The work has been 

published at IJCNN 2020. This research is an important contribution with practical impact, since 

the advantage and outperformance of the proposed approach in the domain-rich applications, i.e., 

applications where we have loads of supplementary data/information accompanying the primary 

data, is significant and demanded for many engineering and ICT use cases. 

 

We performed extensive experiments to demonstrate the performance of the proposed methods.  

In particular, we evaluated the effectiveness of utilizing multiple correlated time series in time-

series forecasting. Such correlated time-series are pervasive in the ICT domain, such as the medical 

sensor data monitoring the clinical status of a set of similar patients; where the similarity can be 

computed on the basis of the supplementary domain information such as disease diagnostics, age 

and ethnicity etc. As our baselines, we chose VRNN and its variant which are state-of-the-art deep 

generative models for sequential data-sets. Based on the empirical analysis reported in the 

deliverable, we demonstrated that the performance of VRNNs can be improved by integrating the 

correlated temporal signals. Additionally, one can find from our experiments that incorporation of 

multiple correlated time series helps recovering the temporal features related to the common 

diseases between the patients.        

 

It is nonetheless important to state that the simple similarity criteria used in the experiments needs 

to be further enhanced to capture more complex relationships between the patients such as learning 

vector representations of graphs in an unsupervised fashion. These vector representations can then 

be included in the training to learn more robust relationships between the patients. We aim to focus 

on such enhanced similarity computations and other information-rich application areas, e.g., 

industry, IoT and communication network time-series forecasting, in future. On the basis of the 

points discussed above, we believe that discarding such supplementary domain information while 

analyzing clinical data-sets may not be an optimal strategy since such information may be used to 

improve the generalization. Lastly, we believe there is a dire need of additional clinical benchmark 

data-sets to improve upon the state-of-the-art in this area. 
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