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1. Executive summary 

 
The objective of WP3.1 is to develop novel techniques for industrial class-imbalance optimisation 

problems, and therefore to save the computation time and simulation cost. Within the imbalance 

research in ECOLE project, data complexity in the imbalanced datasets is studied. The particular 

focus was on whether significant performance improvement can be achieved on any given 

imbalanced datasets through performing hyperparameter optimisation techniques. After that, we 

further studied the performance of several resampling techniques and investigated the relationship 

between data complexity measures and different resampling techniques, based on both benchmark 

datasets and a real-world inspired vehicle mesh dataset (detailed information provided in 

deliverable D1.2). According to our experimental results, it is shown that applying resampling 

techniques on the proposed industrial dataset can improve the classification performance by 

around 10%. Moreover, we also proposed to improve imbalanced classification by introducing 

additional attributes, which gives significant improvement on imbalanced classification 

performance and is simple to implement and can be combined with resampling techniques and 

other algorithmic-level approaches in the imbalanced learning domain. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

2. Major achievements 

 
Major scientific achievements concerning the research invested in this deliverable are presented. 

In particular, short answers to some of the most important research questions − practical issues − 

are described: 

 

Research Questions Discussion 

 

Does hyperparameter 

optimisation bring 

improvement to the 

imbalanced classification 

performance? 

 

 

 

Our experimental results demonstrate that significant 

improvement can be achieved by performing hyperparameter 

optimisation for datasets with low overlap between classes. 

 

 

Is there any relationship 

between data complexity 

measures and the choice of 

resampling techniques? 

 

Although no obvious relationship can be abstracted in our 

experiments, we find ࡲ૚࢜ value, a measure for evaluating the 

overlap which most researchers ignore, has a strong negative 

correlation with the potential AUC value (after resampling). 

 

 

 

 

 

Does introducing additional 

attributes bring improvement 

to  the imbalanced 

classification performance? 

 

According to our experimental results, introducing additional 

attributes can improve the imbalanced classification 

performance in most cases (6 out of 7 datasets). Further study 

shows that this performance improvement is mainly 

contributed by a more accurate classification in the 

overlapping region of the two classes (majority and minority 

classes). The proposed idea of introducing additional 

attributes is simple to implement and can be combined with 

resampling techniques and other algorithmic-level 

approaches in the imbalanced learning domain. 

 

 

 

 

 



 

 

 

3. Introduction 
 

Experience-Based Computation: Learning to Optimize (ECOLE) is a Marie-Curie ITN project, in 

collaboration with University of Birmingham, Honda Research Institute, Leiden University and 

NEC Labs Europe GmbH. The project has been further divided into several subprojects, where 

each early stage researcher (ESR) is responsible for each subproject. The research aims of ECOLE 

include shortening the product cycle, reducing the resource consumption during the complete 

process, and creating more balanced and innovative products. Instead of just developing 

technologies to solve a given problem, it will take a bold step forward and propose to use 

knowledge automatically across different problem domains. Referring to knowledge, skill, and 

practice derived from problem solving processes in time, the experience of optimizing one product 

or process will be learned and transferred automatically to solve other optimization problems. 

Within many optimization processes, solutions are produced which can be classified according to 

their feasibility. However, the ratio of the number of feasible to infeasible solutions might be 

strongly imbalanced. Thus, rendering the employment of any classifier to automatically detect 

unwanted solutions ineffective due to performance degradation. For example, in aerodynamics 

optimization, most car shapes generated are not feasible or novel. Only a small number of designs 

are worth exploring. Within the ECOLE project, deliverable D3.1 “Novel Techniques for Class 

Imbalance Problems” is dedicated towards advancing this topic by exploring techniques for 

handling class imbalance problems. This report on deliverable D3.1 is therefore a summary on the 

conducted research and the achievements within work package WP3 related to this line of 

investigation. 

 

Specifically, we report in the following about completed activities from work package 3.1 “Class 
imbalance classification through semi-supervised and active learning for class imbalance 

problems”. In the following, Section 2 provides a formal description of the class imbalance 

problem as well as provides an overview on basic techniques for handling class imbalance 

problems. In Section 3, hyperparameter optimization as well as the relationship between data 

complexity measures and different resampling techniques are investigated. Section 4 explains the 

studies on anomaly detection with additional attributes. Finally, Section 5 provides a summary and 

outlook of the discussed results.  

 

 

 

 



 

 

 

 

4. The Class Imbalance Classification Problem 
 

The section first introduces the challenge of class imbalance classification (Section 4.1). After that, 

common-used techniques to handle class imbalance problems are introduced (Section 4.2). 

 
4.1.  The Challenge of Class Imbalance Classification 

 

The imbalanced classification problem has caught growing attention from both the academic and 

industrial fields. Technically, any dataset with an unequal class distribution is imbalanced. 

However, only datasets with a significantly skewed distribution are regarded to be imbalanced in 

the imbalanced learning domain [1]. Here, the one or more classes being underrepresented are 

called minority class(es) and the other class(es) are called majority classes.  

 

 
Figure 1: Example of a two-class imbalanced problem [1] with imbalanced ratio of 100:1. 

This type of data will result in a reduction in the effectiveness of classical machine learning 

classification algorithms, because these algorithms assume that the distributions of the classes in 

the dataset are roughly equal [2]. When faced with significantly imbalanced data, these algorithms 

will be heavily biased towards the majority class and give deceptive accuracy. For example, 

suppose there are two classes in the dataset (shown in Figure 1), and the ratio of the majority to 

minority class is 100:1. In this situation, the classification algorithms will tend to predict all the 

samples as the majority class and give a 99% accuracy. This high accuracy is deceptive since the 

algorithms neglect the minority class. When learning from the imbalanced data, the algorithms pay 

more attention to the majority class, whereas, usually the minority class is the one which catches 

more attention in real life, such as disease recognition and fraud detection. This contradiction 

brings the challenges of dealing with imbalanced data. The main challenge of class-imbalance 



 

 

 

 

 

problems is to improve the accuracy of predicting the minority class without losing so much 

accuracy of the majority class. 

 

4.2. Techniques to Handle Class Imbalance Problems 

 

The main techniques to handle class imbalance problems can be divided into four categories, data-

level approaches, algorithm-level approaches, cost-sensitive learning and ensemble-based learning 

[1].  

 

Data-level approaches (also known as resampling techniques) are straight-forward ways to deal 

with the class imbalance problems and they aim at rebalancing the class distribution by resampling 

the data space. Resampling techniques can be categorized into three groups [3]: 

 

• oversampling approaches: replicating the existing minority samples or creating synthetic 

minority samples based on the original ones 

• undersampling approaches: deleting the existing majority samples 

• hybrid approaches: combining both sampling approaches above 

 

Algorithm-level approaches adapt the existing classification learning algorithm to bias the learning 

towards the minority class. This always requires a deep understanding of the working mechanism 

of the selected classifier. Many popular machine learning classifiers have alternative versions for 

dealing with imbalanced problems [1], including SVM, Decision Trees, Bayesian classifiers and 

etc. In the imbalanced learning domain, cost-sensitive learning can be regarded as a specific type 

of algorithm-level approach [1]. A misclassification cost is introduced to eliminate the classifier 

degradation brought by the skewed distribution in the imbalanced dataset. In terms of ensemble-

based learning, it is a combination between an ensemble learning algorithm and one of the 

techniques above.  

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

5. Studying Data Complexity in Imbalanced Datasets 
 

Apart from developing new approaches to solve class-imbalance problems, various studies have 

pointed out that it is important to study the characteristics of the imbalanced dataset [4] [5]. In [4], 

authors emphasize the importance to study the overlap between the two-class samples. In [5], 

authors set up several experiments with the KEEL benchmark datasets [6] to study the relationship 

between various data complexity measures and the potential AUC value. It is also pointed out in 

[5] that the distinctive inner procedures of oversampling approaches are suitable for particular 

characteristics of data. However,  

 

In the following, we will therefore study data complexity in the context of class imbalance 

learning. We first begin by investigating of hyperparameter tuning in the context of class 

imbalance learning  in Section 5.1. Therefore, we introduce the considered scenarios of interest, 

studied resampling techniques, performance and data complexity measures, as well as 

subsequently present the experimental results, which clearly indicate the beneficial effect of 

previous hyperparameter tuning. However, we also acknowledge some associated disadvantages. 

Subsequently, in Section 5.2 we report on results of our study on the relationship between data 

complexity measures and different resampling techniques. 

 

 

5.1. Hyperparameter Optimisation for Improving Classification under Class Imbalance 

 

Although the class-imbalance classification problem has caught a huge amount of attention, 

hyperparameter optimisation has not been studied in detail in this field. Both classification 

algorithms and resampling techniques involve some hyperparameters that can be tuned. We 

explore the potential of applying hyperparameter optimisation for automatic construction of high 

quality classifiers for imbalanced data. In our research we experiment with a small collection of 

imbalanced  datasets and two classification algorithms: RandomForest and SVM. In each 

experiment we consider six scenarios for hyperparameter optimisation (see Table 1). 

 

Table 1: Six scenarios in our experiments. 

Scenario Classification Algorithms Resampling Approaches 

ࢊ�  (1)  Default hyperparameters No ࢔ࡾ +

࢕�  (2)  Optimised hyperparameters No ࢔ࡾ +

ࢊ�  (3)  Default hyperparameters Default hyperparameters ࢊࡾ +

࢕�  (4)  Optimised hyperparameters Default hyperparameters ࢊࡾ +

ࢊ�  (5)  Default hyperparameters Optimised hyperparameters ࢕ࡾ +

࢕�  (6)  Optimised hyperparameters Optimised hyperparameters ࢕ࡾ +

 

 

 



 

 

 

 

 

 

5.1.1 Resampling Techniques 

 

SMOTE The synthetic minority over-sampling technique (SMOTE), proposed in 2002, is the most 

popular resampling technique [7]. SMOTE produces balanced data through creating artificial data 

based on the randomly chosen minority samples and their K-nearest neighbors [7]. A new synthetic 

sample ࢙࢞ can be generated according to the following equation [8] 

 ࢙࢞ = ࢏࢞ +  � ∙ ሺ࢞̂࢏   ,ሻ࢏࢞ −
 

where ࢞࢏ is the minority sample to oversample, ࢞̂࢏ is a randomly selected neighbor from its K-

nearest minority class neighbors and � is a random number, where � ∈ [૙, ૚]. Figure 2 illustrates 

how the synthetic samples are created in the SMOTE technique. 

 

ADASYN The adaptive synthetic (ADASYN) sampling technique is a method that aims to 

adaptively generate minority samples according to their distributions [9]. The samples which are 

harder to learn are given higher importance and will be oversampled more often [5]. The key point 

in ADASYN is to determine a weight (࢘̂࢏) for each minority sample and use ࢘̂࢏ as the sampling 

importance. Weight ࢘̂࢏ of a minority sample �ܑ is defined as [9] 

 

 ࢘�̂ = ∑࢏࢘ ૚=࢏࢙࢓࢏࢘ , ࢏࢘  = ࡷ࢏� , ࢏  = ૚,…  , ࢙࢓,
 

 

 

 

 
Figure 2: An illustration of how to generate synthetic samples through 

SMOTE. Example of K-nearest minority class neighbors for sample �� 
(K=5) (left) and new synthetic samples generated through SMOTE 

(right). 

 



 

 

 

 

 

 
 

 

 

 

 

 

 

where ࢙࢓ is the number of minority samples, �ܑ is the number of neighbors of �ܑ that belong to 

majority class. For a specific minority sample, if the value of ࢘࢏ is close to 1, it indicates a high 

level of difficulty to learn it. Then, the synthetic samples that will be generated for a minority 

sample can be calculated by [9] 

࢏ࢍ  = ࢘�̂ ⋅  ,ࡳ
 

where ࡳ is the total number of synthetic minority samples that need to be produced. Figure 3 shows 

an example of the sampling importance for different minority samples. 

 

SMOTETL and SMOTEENN In a binary classification problem, a Tomek link is defined as a 

pair of samples from different classes which are the nearest neighbors for each other [10]. In the 

SMOTETL technique, the first step is to oversample the minority classes using SMOTE and then 

the Tomek links for the oversampled samples are removed [3]. In other words, the SMOTETL 

(Figure 4) technique provides a more clear decision boundary by removing part of the samples in 

the overlapping region. Similar to SMOTETL, the first step of SMOTEENN is also to oversample 

the minority class with SMOTE. After that, the Wilson's Edited Nearest Neighbors (ENN) are used 

to remove the sample who has a different class from at least two of its three nearest neighbors [11]. 

By removing the noisy samples, SMOTEENN (Figure 5) makes the classification algorithm work 

more efficiently. 

 

Figure 3: Example of sampling importance for different minority 

samples. According to definition, �ଵ =  �ଶ = ͳ , �ଷ =  �ସ = Ͳ.8  and �̂ଵ =  �̂ଶ  >  �̂ଷ  = �̂ସ , indicating the sampling importance of sample  �ଵ , �ଶ  is higher than �ଷ,  �ସ and more synthetic samples will be 

produced for �ଵ , �ଶ. 



 

 

 

 

 

 

 

 

 
Figure 5: Example of removing the noisy samples using ENN. 

 

5.1.2 Hyperparameter Optimisation 

 

The naïve approach to imbalanced learning is just to combine resampling techniques and machine 

learning classification algorithms. However, compared with randomly selecting the 

hyperparameters in a learning algorithm, choosing a set of optimal hyperparameters should 

improve the performance of the algorithm. 

 

Within our studies RandomForest and SVM are considered to  do the classification and both 

algorithms involve various hyperparameters, which affect the performance (e.g., prediction 

accuracy) significantly. For instance, in RandomForest, the choice of the depth of a decision tree  

and  the  number  of trees in a forest will have an influence on the performance.   To determine the 

best set of hyperparameters for a given problem/dataset naturally leads to the well-established 

hyperparameter optimisation task. The hyperparameter optimisation problem can be represented 

by [12] ࢞∗ = �∋࢞ܖܑܕ܏�� ࢌ ሺ࢞ሻ, 
where ࢞  can be any combination of hyperparameters in domain �  and ࢞∗  is the set of 

hyperparameters that achieve the lowest value of objective function ࢌሺ࢞ሻ . Typically, it is 

expensive to evaluate ࢌሺ࢞ሻ directly. 

 

 
Figure 4: Example of clearing Tomek links for oversampled samples. 



 

 

 

 

 

5.1.3 Performance Measures 

 

Accuracy is the most commonly used measure for classification problems. In a binary 

classification problem, the confusion matrix (see Table 2) provides an intuitive approach towards 

defining accuracy.  

 

Table 2: Confusion matrix for a binary classification problem. 

 Positive Prediction Negative Prediction 

Positive Class True Positives (TP) False Negatives (FN) 

Negative Class False Positives (FP) True Negatives (TN) 

 

Based upon the entries, accuracy (Acc) can be subsequently defined as the sum over all true 

positives (TP) and negatives (TN) averaged over the sum of all samples, such that 

ࢉࢉ�  = �ࢀ + �ࢀࡺࢀ + ࡺࡲ + �ࡲ +  . ࡺࢀ
 

However, as mentioned in Section 4.1, accuracy may give a deceptive evaluation and does not 

reflect the actual effectiveness of an algorithm in imbalanced domains. In imbalance learning 

domain, the Area Under the ROC Curve (AUC) can be used to evaluate the performance [13] [4] 

and can be computed by 

�ࢁ�  = ૚ ࢋ࢚�࢘�ࢀ + − ૛ࢋ࢚�࢘�ࡲ ࢋ࢚�࢘�ࢀ, �ࢀ�ࢀ = + , ࡺࡲ ࢋ࢚�࢘�ࡲ �ࡲ�ࡲ = +   , ࡺࢀ
 

where ࢋ࢚�࢘�ࢀ is the true positives rate, ࢋ࢚�࢘�ࡲ is the false positives rate. Apart from the AUC 

value, there are also some other measures to assess the performance for imbalanced datasets, such 

as geometric mean (GM) [14] and F-measure (FM) [4]. These measures are given by 

ࡹࡳ  =  √ �ࢀ�ࢀ + �ࡲࡺࢀ × ࡺࡲ + , ࡺࢀ ࡹࡲ =  ሺ૚ + �ሻ૛  × × ࢒࢒�ࢉࢋࡾ ૛�࢔࢕࢏࢙࢏ࢉࢋ࢘�  × ࢔࢕࢏࢙࢏ࢉࢋ࢘� + ࢒࢒�ࢉࢋࡾ  ,  
࢒࢒�ࢉࢋࡾ = �܂�܂ + �� , ࢔࢕࢏࢙࢏ࢉࢋ࢘� = �ࢀ�ࢀ  +  , �ࡲ

 

where � is a coefficient and normally set to 1. 

 

5.1.4 Data Complexity Measures 

 

For these studies only one of the feature overlapping measures, the maximum Fisher's discriminant 

ratio is considered. The maximum Fisher’s discriminant, denoted by ࡲ૚, measures the overlap 

between the feature values of different classes and is given by [11] 

૚ࡲ  = ࢓૚=࢏��ܕ ࢏ࢌ࢘ , 



 

 

 

 

 

 

where ࢓ is the number of features, ࢘࢏ࢌ  is the discriminant ratio for each feature ࢏ࢌ. In a binary 

classification problems, ࢘࢏ࢌ  can be calculated as below [15] [11]: 

࢏ࢌ࢘  = ∑ ࢏ࢌࢉ�ቀࢉ࢔ − ∑૚=ࢉቁ૛૛࢏ࢌ� ∑ ቀ࢞ࢉ࢐ − ૚=ࢉ૚૛=࢐ࢉ࢔ቁ૛࢏ࢌࢉ� , 
 

where ܖ� is the number of examples in class ܑ܎�� ,ࢉ is the mean value of feature ࢏ࢌ across class ܑ܎� ,ࢉ is the mean value of feature ࢏ࢌ across all classes, and �ܒ� represents the value of feature ࢏ࢌ for 

a sample from class [11] ࢉ. F1 measures the highest discriminant ratio among all the features in 

the dataset and higher discriminant ratio indicates lower complexity [11]. An example of F1 

computation is given in Figure 6. 

 

 
Figure 6: Example of F1 computation for a binary dataset [11]. 

 

5.1.5 Experimental Setup and Results 

 

The experiments reported here are based on six imbalanced datasets from the KEEL-collection 

[6]. Detailed information on the datasets are shown in Table 3. IR indicates the imbalance ratio, 

which is the ratio of the number of majority class samples to the number of minority class samples. 

The overlap between classes is calculated by Maximum Fisher’s Discriminant Ratio (ࡲ૚). Lower 

F1 value indicates higher overlap between classes [5]. 

 

 

 



 

 

 

 

 

Table 3: Information on the datasets. 

Dataset #Attributes #Examples #Classes IR F1 

glass1 9 214 2 1.82 0.92 

glass6 9 214 2 6.38 0.53 

yeast3 8 1484 2 8.1 0.70 

yeast4 8 1484 2 28.1 0.91 

ecoli3 7 336 2 8.6 0.84 

abalone19 8 4174 2 129.44 0.96 

 

We experiment with six imbalanced datasets, two algorithms and four resampling techniques. 

Thus, in our experiment, we have 6×2×5 = 60 settings tested on each data set, with 6 scenarios, 2 

classifiers, and 5 resampling approaches (including none). 

 

The hyperparameter optimisation for classification algorithm is done through HyperOpt. 

Hyperparameters in resampling approaches includes the number of neighbors, imbalance ratio 

after resampling and etc. In our experiment, hyperparameter optimisation for resampling 

approaches is done through grid search. Whenever we optimise hyperparameters with “HyperOpt”, 
the AUC loss (1-AUC) is set as the objective function to minimize and the number of iterations is 

set to 500. For each experiment, we repeated 30 times with different random seeds. After that, the 

paired t-tests were performed on each 30 AUC values to test if there is significant difference 

between the results of each scenario on a 5% significance level. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

Table 4: Experimental results (AUC) for two classification algorithms regarding six scenarios. 

The grey shade and no shade indicate the experimental results for SVM and RandomForest 

respectively. p-values indicate the statistical evidence of t-tests between experimental results of 

scenario (�� + ��) and (�� + ��). Dataset with * indicates the results of scenario (�� + ��) is 

significantly higher than results of scenario (�� + ��). 

 
 

For all the six datasets in our experiment (experimental results shown in Table 4), we observe that 

optimising the hyperparameters for both classifiers and resampling approaches gives the best 

performance. Nevertheless, the time consumption caused by hyperparameter optimisation is not 

negligible. Our experimental results also demonstrate that significant improvement can be 



 

 

 

 

 

achieved by performing hyperparameter optimisation for datasets with high F1 values. That is to 

say, hyperparameter optimisation works efficiently for datasets with low overlap between classes. 

 

 

 

5.2. Relationship between Data Complexity and the Choice of Resampling Techniques 

 
Although over 90 sampling approaches have been developed in the imbalance learning domain, 

most of the empirical study and application work are still based on the “classical” resampling 
techniques. We setup several experiments on 19 benchmark datasets are set up to study the 

efficiency of six powerful oversampling approaches, including both “classical” and new ones. We 

also perform the experiments on our real-world inspired vehicle mesh dataset, which has been 

detailed introduced in deliverable D1.2. 

 
5.2.1 Resampling Techniques 

 

The six resampling techniques can be categorized into two groups: 

 

• Classical ones: which focus on the local information, including SMOTE, ADASYN and 

MWMOTE (the first two has been introduced in Section 5.1.1). 

• New ones: which consider the minority class distribution, including RACOG, wRACOG 

and RWO-sampling. 

 
MWMOTE Compared to other oversampling techniques, the majority weighted minority 

oversampling techniques (MWMOTE) improves the sample selection scheme and the synthetic 

sample generation scheme [16]. MWMOTE first finds the informative minority samples (ܖܑܕܑ܁) 

by removing the “noise” minority samples and finding the borderline majority samples. Then, 
every sample in ࢔࢏࢓࢏ࡿ is given a selection weight ࢝ࡿ, according to the distance to the decision 

boundary, the sparsity of the located minority class cluster and the sparsity of the nearest majority 

class cluster. These weights are converted in to selection probability (࢖ࡿ), which will be used in 

the synthetic sample generation stage. Different from the k-NN-based approach, MWMOTE 

adopts a clustering algorithm to generate the synthetic samples. The cluster-based synthetic sample 

generation process proposed in MWMOTE can be described as, 1). cluster all samples in ࢔࢏࢓࢏ࡿ 

into ࡹ groups; 2). select a minority sample ࢞ from ࢔࢏࢓࢏ࡿ according to ࢖ࡿ and randomly select 

another sample y from the same cluster of ࢞; 3). use the same equation employed in k-NN-based 

approach to generate the synthetic sample; 4). repeat 1) – 3) until the required number of synthetic 

samples is generated. 

 

RACOG and wRACOG The oversampling approaches can effectively increase the number of 

minority class samples and achieve a balanced training dataset for classifiers. However, the 

oversampling approaches introduced above heavily reply on local information of the minority 

class samples and do not take the overall distribution of the minority class into account. Hence, 

the global information of the minority samples cannot be guaranteed. In order to tackle this 



 

 

 

 

 

problem, Das et al. [17] proposed RACOG (RApidy COnverging Gibbs) and wRACOG 

(Wrapper-based RApidy COnverging Gibbs). 

 

In these two algorithms, the n-dimensional probability distribution of minority class is optimally 

approximated by Chow-Liu's dependence tree algorithm and the synthetic samples are generated 

from the approximated distribution using Gibbs sampling. The minority class data points are 

chosen to be the initial values to start the Gibbs sampler. Instead of running an “exhausting'” 

long Markov chain, the two algorithms produce multiple relatively short Markov chains, each 

starting with a different minority class sample. RACOG selects the new minority samples from 

the Gibbs sampler using a predefined lag and this selection procedure does not take the 

usefulness of the generated samples into account. On the other hand, wRACOG considers the 

usefulness of the generated samples and selects those samples which have the highest probability 

of being misclassified by the existing learning model [17]. 

 

RWO-Sampling Inspired by the central limit theorem, Zhang et al. [18] proposed the random 

walk oversampling (RWO-Sampling) approach to generate the synthetic minority class samples 

which follows the same distribution as the original training data. Given an imbalanced dataset with 

multiple attributes, the mean and standard deviation for the ࢏th attribute �࢏ (ܑ ∈ ૚, ૛, ૜, …  in (ܕ,

minority class data can be calculated and denoted by �ܑ and �ܑ. Under the central limit theorem, 

as the number of the minority samples approaches infinite, the following formula holds 

࢏�  − ࢔√/′࢏�′࢏� → ,ሺ૙ࡺ ૚ሻ, 
 

where �′ܑ and �′ܑ is the real mean and standard deviation for attribute �ܑ. 
 

In order to add ࢓ synthetic examples to the ࢔ original minority examples, we first select at random ࢓ examples from the minority class and then for each of the selected examples �⃗ = ሺ�૚, … ,  ሻܕ�

we generate its synthetic counterpart by replacing �ܑሺܒሻ (the ࢏th attribute in �ܒ, ܒ ∈ ૚, ૛,… ܑ� with (ܕ, − �ܑ ⋅  th feature࢏ denote the mean and the standard deviation of the ࢏� and ࢏� where ,ܖ√/ܑ�

restricted to the original minority class, and ࢘࢏ is a random value drawn from the standard Gaussian 

distribution. We can repeat the above process until we reach the required amount of synthetic 

examples. Since the synthetic sample is achieved by randomly walking from one real sample, this 

oversampling is called random walk oversampling. 

 
5.2.2 Data Complexity Measures 

 
For the data complexity measures in binary classification problems, the measures can be divided  

into  feature  overlapping  measures,  measures  of  the  separability  of classes and geometry, 

topology and density of manifolds measures [11] [19]. Among these measures, we consider feature 

overlapping measures and linearity measures in this part of research (Table 5), where the former 

characterize how informative the features classify the classes and the later ones try to quantify the 

linear separability of the classes [11]. 

 



 

 

 

 

 

Table 5: Complexity measures information. “Positive” and “Negative” indicate the positive and 
negative relation between measure value and data complexity respectively. 

Measure Description Complexity 

F1 Maximum Fisher’s Discriminant Ratio Negative 

F1v The Directional-vector Maximum Fisher’s Discriminant Ratio Negative 

F2 Volume of Overlapping Region Positive 

F3 Maximum Individual Feature Efficiency Negative 

L1 Sum of the Error Distance by Linear Programming Positive 

L2 Error Rate of Linear Classifier Positive 

L3 Non-Linearity of a Linear Classifier Positive 

 
Feature Overlapping Measures Detailed information on ࡲ૚ has been given in Section 5.1.4. ࡲ૚࢜ is a complement of ࡲ૚ and a higher value of ࡲ૚࢜ indicates there exists a vector that can 

separate different class samples after these samples are projected on it [20]. ࡲ૛ calculates the 

overlap ratio of all features (the width of the overlap interval to the width of the entire interval) 

and returns the product of the ratios of all features [20]. ࡲ૜ measures the individual feature 

efficiency and returns the maximum value among all features. 

 

Linearity Measures ࡸ૚ and ࡸ૛ both measure to what extent the classes can be linearly 

separated using an SVM with a linear kernel [20], where ࡸ૚ returns the sum of the distances of 

the misclassified samples to the linear boundary and ࡸ૛ returns the error rate of the linear 

classifier. An example of ࡸ૚ and ࡸ૛ computation is given in Figure 7. ࡸ૜ returns the error rate 

of an SVM with linear kernel on a test set, where the SVM is trained on training samples and the 

test set is manually created by performing linear interpolation on the two randomly chosen 

samples from the same class. 

 

 
Figure 7: Example of L1 and L2 computation for a binary dataset. 



 

 

 

 

 

5.2.3 Experimental Setup and Results 

 
The experiments in this part of the report are based on 19 two-class imbalanced datasets from the 

KEEL-collection [6] and six powerful oversampling approaches (using R package imbalance 

[21]), which have been reviewed in the past sections. Every collected dataset is divided into 5 

stratified folds (for cross-validation) and only the training set is oversampled, where the stratified 

fold is to ensure the imbalance ratio in the training set is consistent with the original dataset and 

only oversampling the training set is to avoid over-optimism problem [5]. The 19 collected datasets 

can be simply divided into 4 groups, ecoli, glass, vehicle and yeast (Table 6).  

 

Table 6: Information on datasets in 4 groups. 

Datasets #Attributes #Samples Imbalance Ratio (IR) 

ecoli{1, 2, 3, 4} 7 336 { 3.36, 5.46, 8.6, 15.8 } 

glass{0, 1, 2, 4, 5, 6} 9 214 { 2.06, 1.82, 11.59, 15.47, 22.78, 6.38 } 

vehicle{0, 1, 2, 3,} 18 846 { 3.25, 2.9, 2.88, 2.99 } 

yeast{1, 3, 4, 5, 6} 8 1484 { 2.46, 8.1, 28.1, 32.73, 41.4 } 

 

We aim to study the efficiency of different oversampling approaches and investigate the 

relationship between data complexity measures and the choice of oversampling techniques. 

Therefore, we need to calculate the 7 data complexity measures (shown in the previous section) 

for each dataset. In our 30 experiments for each dataset, we calculate the 7 data complexity 

measures for every training set using R package ECoL [21]. Since we use 5 stratified cross- 

validations, we average each data complexity measures for these 5 training sets and make it the 

data complexity measure for the dataset. 

 

Table 7: AUC results for C5.0 decision tree. 

Dataset Baseline SMOTE ADASYN MWMOTE RACOG wRACOG RWO 

ecoli1 0.9408 0.9428 0.9342 0.9414 0.9453 0.9384 0.9432 

ecoli2 0.8736 0.9190 0.9102 0.9112 0.9133 0.8987 0.9143 

ecoli3 0.7765 0.9170 0.9013 0.9049 0.9204 0.8648 0.9126 

ecoli4 0.8403 0.9271 0.8832 0.9235 0.9244 0.8896 0.9020 

glass0 0.8179 0.8328 0.8254 0.8345 0.8470 0.8391 0.8364 

glass1 0.6995 0.7391 0.7440 0.7473 0.7588 0.7493 0.6944 

glass2 0.7309 0.8189 0.8201 0.7995 0.8159 0.7960 0.7125 

glass4 0.8461 0.9227 0.9203 0.9126 0.9216 0.8542 0.9252 

glass5 0.9950 0.9927 0.9931 0.9935 0.9940 0.9952 0.9932 

glass6 0.9341 0.9357 0.9306 0.9385 0.9388 0.9386 0.9354 

vehicle0 0.9722 0.9730 0.9736 0.9723 0.9737 0.9739 0.9679 

vehicle1 0.7430 0.7993 0.7916 0.7977 0.7970 0.8000 0.7738 

vehicle2 0.9735 0.9722 0.9748 0.9757 0.9803 0.9815 0.9766 

vehicle3 0.7858 0.8001 0.7954 0.8115 0.8158 0.8117 0.7907 

yeast1 0.7318 0.7380 0.7282 0.7473 0.7536 0.6766 0.7279 

yeast3 0.9335 0.9594 0.9580 0.9602 0.9642 0.9551 0.9422 

yeast4 0.7769 0.9020 0.8989 0.8884 0.8549 0.8142 0.8367 

yeast5 0.9555 0.9769 0.9773 0.9773 0.9761 0.9688 0.9772 

yeast6 0.7307 0.8792 0.8850 0.8789 0.8806 0.7815 0.8868 

 



 

 

 

 

 

The AUC results for C5.0 decision tree in our experiments are presented in Table 7. In the 

experimental results of decision tree, we can observe that RACOG outperforms the other 5 

oversampling techniques in 8 out of 19 datasets. It is worth mentioning that RACOG costs more 

time than the other five considered oversampling techniques due to the running of Markov chain 

in its data generation process. From our experimental results, we can conclude that, in most cases, 

oversampling approaches which consider the minority class distribution (RACOG, wRACOG and 

RWO-Sampling) perform better. It was expected that data complexity can provide some guidance 

for choosing the oversampling technique, however, from our experimental results, no obvious 

relationship between data complexity and the choice of oversampling approaches can be 

concluded. This is because the 6 introduced oversampling approaches are designed for common 

datasets and do not take a specific data characteristic into account. 

 

1. According to our experimental results, although the data complexity measures cannot provide 

guidance for choosing the oversampling approaches, we find there is a strong correlation between 

the potential best AUC (after oversample) and some of the data complexity measures. From 

Error! Reference source not found. below and  

Table 8 below, it can be concluded that the potential best AUC value that can be achieved through 

C5.0 decision tree and oversampling techniques has an extreme negative correlation with the ࡲ૚࢜ 

value and linearity measures. Compared to literature, only in [22] the authors demonstrate that ࡲ૚ 

value has an influence on the potential improvement brought by oversampling approaches. 

However, they did not consider the ࡲ૚࢜ measure. Hence, we recommend using ࡲ૚࢜ to evaluate 

the overlap in imbalanced dataset. 

 

  

 

Figure 8 Correlation matrix. 



 

 

 

 

 

 

 

 
 

Table 8: Results of hypothesis test 

 

 

 

 

 



 

 

 

 

6. Improving Imbalanced Classification by Introducing Additional Attributes 

 
Although the anomaly detection problem can be considered as an extreme case of class imbalance 

problem, very few studies consider improving class imbalance classification with anomaly 

detection ideas. Most data-level approaches in the imbalanced learning domain aim to introduce 

more information to the original dataset by generating synthetic samples. However, in this part of 

research, we gain additional information in another way, by introducing additional attributes. We 

propose to introduce the outlier score and four types of samples (safe, borderline, rare, outlier) as 

additional attributes in order to gain more information on the data characteristics and improve the 

classification performance. The proposed idea of introducing additional attributes is simple to 

implement and can be combined with resampling techniques and other algorithmic-level 

approaches in the imbalanced learning domain. 

 

In the following, we will first review the related works in Section 4.1, including selected 

undersampling techniques, four types of samples in the imbalanced learning domain and the local 

outlier factor in the anomaly detection domain. After that, the details on the experiments are 

reported, including the experimental setup in Section 4.2 and experimental results and discussions 

in Section 4.3 

 

 
6.1. Related Work 

 

As mentioned above, we propose to introduce two additional attributes into the imbalanced 

datasets in order to gain more information on the data characteristics and improve the classification 

performance. Introducing additional attributes can be regarded as a data preprocessing method, 

which is independent of resampling techniques and algorithmic-level approaches, and can also be 

combined with these two approaches. In this section, the background knowledge related to our 

experiment is given, including resampling techniques (Section 4.1.1), the definition of four types 

of samples in the imbalance learning domain (Section 4.1.2) and the outlier score (Section 4.1.3). 

 

6.1.1 Resampling Techniques 

 

We experiment with two oversampling techniques, including SMOTE and ADASYN (given in 

previous section) and two undersampling techniques, including NCL and OSS. 

 

Undersampling Techniques One-Sided Selection (OSS) is an undersampling technique which 

combines Tomek Links and the Condensed Nearest Neighbour (CNN) Rule [1] [23]. In OSS, noisy 

and borderline majority samples are removed with so-called Tomek links [10]. The safe majority 

samples which have limited contribution for building the decision boundary are then removed with 

CNN. Neighbourhood Cleaning Rule (NCL) emphasizes the quality of the retained majority class 

samples after data cleaning [24]. The cleaning process is first performed by removing ambiguous 

majority samples through Wilson’s Edited Nearest Neighbour Rule (ENN) [25]. Then, the majority 



 

 

 

 

 

samples which have different labels from their three nearest neighbours are removed. Apart from 

this, if a minority sample has different labels from its three nearest neighbours, then the three 

neighbours are removed. 

 

6.1.2 Four Types of Samples in the Imbalance Learning Domain 

 
Napierala and Stefanowski proposed to analyse the local characteristics of minority examples by 

dividing them into four different types: safe, borderline, rare examples and outliers [26]. The 

identification of the type of an example can be done through modeling its k-neighbourhood. 

Considering that many applications involve both nominal and continuous attributes, the HVDM 

metric is applied to calculate the distance between different examples. Given the number of 

neighbours k (odd), the label to a minority example can be assigned through the ratio of the number 

of its minority neighbours to the total number of neighbours (࢒࢒�࢔࢏࢓ࡾ ) according to Table 9. The label 

for a majority all example can be assigned in a similar way. 

 

Table 9: Rules to assign the four types of minority examples. 

 
 

 

6.1.3 Outlier Score 

 

Many algorithms have been developed to deal with anomaly detection problems and the 

experiments here are mainly performed with the nearest- neighbour based local outlier score 

(LOF). Local outlier factor (LOF), which indicates the degree of a sample being an outlier, was 

first introduced by Breunig et al. in 2000 [27]. The LOF of an object depends on its relative degree 

of isolation from its surrounding neighbours. Several definitions are needed to calculate the LOF 

and are summarized in the following Algorithm 1. 

 

According to the definition of LOF, a value of approximately 1 indicates that the local density of 

data point �࢏ is similar to its neighbours. A value below 1 indicates that data point �࢏ locates in a 

relatively denser area and does not seem to be an anomaly, while a value significantly larger than 

1 indicates that data point �࢏ is alienated from other points, which is most likely an outlier. 
 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

Algorithm 1: Local outlier factor (LOF) algorithm [27]. 
 

 
 

 

 

 

 

 

 

 



 

 

 

 

 

6.2. Experimental Setup 

 

In this part of research, we propose to introduce the four types of samples and the outlier score as 

additional attributes of the original imbalanced dataset, where the former can be expressed as ࢒࢒�࢔࢏࢓ࡾ  

and the latter can be calculated through Python library PyOD [28]. The experiments reported here 

are based on 7 two-class imbalanced datasets, including 6 imbalanced benchmark datasets (given 

in Table 10) and a 2D imbalanced chess dataset, which is commonly used for visualizing the 

effectiveness of the selected techniques in the imbalanced learning domain [1]. For each dataset, 

we consider four scenarios, whether to perform resampling techniques on the original datasets and 

whether to perform resampling techniques on the datasets with additional attributes. For each 

scenario of each dataset, we repeat the experiments 30 times with different random seeds. After 

that, the paired t-tests were performed on each of the 30 performance metric values to test if there 

is significant difference between the results of each scenario on a 5% significance level. Each 

collected dataset is divided into 5 stratified folds (for cross-validation) and only the training set is 

oversampled, where the stratified fold is to ensure that the imbalance ratio in the training set is 

consistent with the original dataset and only oversampling the training set  is to avoid over-

optimism problem [5].  

 

Table 10: Information on benchmark datasets [6]. 

 
 

 

6.3. Experimental Results and Discussion 

 

Like other studies [9] [4], we also use SVM and Decision Tree as the base classifiers in our 

experiments to compare the performance of the proposed method and the existing methods. Please 

note that we did not tune the hyperparameters for the classification algorithms and the resampling 

techniques [22]. The experimental results with the two additional attributes (four types of samples 

and LOF score) are presented in Table 11. We can observe that introducing outlier score and four 

types of samples as additional attributes can significantly improve the imbalanced classification 

performance in most cases. For 5 out of 7 datasets (2D chess dataset, glass1, yeast4, wine quality 

and page block ), only introducing additional attributes (with no resampling) gives better results 

than performing resampling techniques. 



 

 

 

 

 

Table 11: Experimental results for two classification algorithms (with LOF score). “Add = YES" 

means we introduce additional attributes to the original datasets. “---” means TP+FN=0 or 
TP+FP=0 and performance metric cannot be computed. 

 



 

 

 

 

 

 
 

 
2. According to our experimental setup, we notice that introducing the outlier score focuses on 

dealing with the minority samples since the outlier score indicates the degree of a sample being an 

outlier. Meanwhile, introducing four types of samples (safe, borderline, rare and outlier) puts 

emphasis on separating the overlapping region and safe region. The visualisation of different 

scenarios for the 2D chess dataset is given in  

Figure 9 in order to further study the reason  for the performance improvement.  

 

3. From both the experimental results in  Table 11 and the visualisation in  

Figure 9, we can conclude that, for the 2D chess dataset, the experiment with the two additional 

attributes outperforms the experiment with the classical resampling technique SMOTE. The figure 

also illustrates that the proposed method has a better ability to handle samples in the overlapping 

region. 



 

 

 

 

 

 
 

Figure 9: [top left]. Original imbalanced 2D chess dataset. [top right]. Classification 

performance for original chess dataset. The red-circled points indicate the misclassified points. 

[bottom left]. Classification performance for SMOTE-sampled chess dataset. [bottom right]. 

Classification performance for chess dataset with additional attributes. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

7. Summary and Outlook 

 
In this report, two aspects of class imbalance studies have been described: learning data complexity 

and improving imbalanced classification by introducing additional attributes. We provided details 

on hyperparameter optimisation on class imbalance classification and studied the empirical 

investigation on several state-of-the-art resampling techniques. The extended work on Section 3.2 

“a potential application on the real-world inspired imbalanced vehicle mesh dataset” has already 

been introduced in the previous deliverable (D1.2). We reported the experimental results on the 

proposed idea of improving imbalanced classification by introducing additional attributes. The 

main conclusions that can be derived from our studies can be summarized as below: 

 

• Oversampling techniques that consider the minority class distribution (new ones) perform 

better in most cases and the ࡲ૚࢜ value, a measure for evaluating the overlap which most 

researchers ignore, has a strong negative correlation with the potential AUC value. 

• Applying hyperparameter optimisation for both classification algorithms and resampling 

approaches can produce the best results for classifying the imbalanced datasets. 

Furthermore, data complexity, especially the overlap between classes, has a big impact on 

the potential improvement that can be achieved through hyperparameter optimisation. 

• Introducing additional attributes can improve the imbalanced classification performance in 

most cases. Further study shows that this performance improvement  is mainly contributed 

by a more accurate classification in the overlapping region of the two classes (majority and 

minority classes) 

 

Future work will cover the application of classifying the mesh prototypes in the car industry and 

extend our anomaly detection related work to online learning. 
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