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Executive summary 

 
The objective of WP2.4 is to ready our scientific and software developments for handling 

imbalanced data sets, automated machine learning, model-assisted robust optimization, and 

dynamic multi-objective optimization. Eight peer-reviewed papers (please see the publication list 

in Section 1) have been published for these four research topics. In this report, we briefly describe 

these publications and focus mainly on the details of software implementations, which will 

facilitate future utilization of scientific outputs of this project. Note that the detailed information 

on these eight publications have already been provided in the previous deliverable reports, namely 

D2.1, D2.2, D2.3, D3.4 and D3.1 respectively. This report focuses on introducing software 

components, including code repositories, code workflow, and user manuals. 

Major Achievements 
 

Major scientific achievements regarding work package 2.4 are presented below, where we present 

them with the motivating research questions/practical issues and short answers thereto: 

 

Research Questions Discussion 

Over 90 resampling techniques have been 

developed in the imbalanced learning 

domain. Do oversampling techniques that 

take global information of minority samples 

(new ones) perform better than those which 

heavily reply on local information of the 

minority class samples (classical ones)? 

 

 

From our experimental results, we can 

conclude that, in most cases, oversampling 

approaches which consider the minority 

class distribution (RApidy COnverging 

Gibbs (RACOG) [1], Wrapper-based 

RApidy COnverging Gibbs (wRACOG)  

and Random Walk Oversampling (RWO-

Sampling) [2]) perform better and RACOG 

gave the best performances among the sixed 

reviewed oversampling techniques.  

Does introducing additional attributes bring 

improvement to the imbalanced 

classification performance? 

 

According to our experimental results, 

introducing additional attributes can 

improve the imbalanced classification 

performance in most cases (6 out of 7 

datasets). Furthermore, the proposed idea of 

introducing additional attributes is simple to 

implement and can be combined with 

resampling techniques and other 

algorithmic-level approaches in the 

imbalanced learning domain. 

 

Existing resampling techniques and 

classification algorithms have been proved 

powerful to handle imbalanced datasets. 

However, how to efficiently choose the 

best-suited combination of a resampling 

We proposed an automated Combined 

Algorithm Selection and Hyperparameter 

(CASH) optimization approach for 

imbalanced classification problems, which 

automatically chooses the best set of 



 

 

 

 

 

technique and a classification algorithm for 

a given problem? 

algorithms, i.e., resampling technique and 

classification algorithm, together with 
optimized hyperparameter settings for an 

arbitrary imbalanced dataset. The numeric 

results show significantly improved 
performance with respect to the state-of-the-

art techniques in the imbalanced 

classification domain over 44 examined 
datasets. 

What is the effectiveness of resampling 

techniques for automatically handling 

imbalanced classification? 

Our findings indicate that 98% of runs yield 

the best performance with the help of 

resampling techniques. Thus, we 

recommend to uses resampling techniques 

to deal with class imbalance problems. 

 

What is the most efficient optimization 

approach to deal with the model selection 

and hyperparameter optimization problems 

for handling class imbalance problems? 

Our results demonstrate that Bayesian 

optimization is the best approach for the 

combined model selection and 

hyperparameter optimization for this aim.  

The co-called "Moment-generating function 

of the improvement" (MGFI) has been 

proposed as an acquisition function (AF) for 

the Bayesian Optimization (BO) algorithm. 

However, how can it be extended to the 

robust scenario? 

The MGFI can be extended to the robust 

scenario by: Substituting the minimum 

observed value of the function (used in 

nominal BO algorithm) with the robust 

optimal value predicted by the Kriging 

model, and by defining the improvement 

over the robust optimal value predicted by 

the Kriging model.  

How does the performance of the robust 

MGFI compare to that of the baseline? 

The performance of the extended MGFI is 

competitive to that of the baseline – the 

robust expected improvement criterion – as 

it performs superior in 6/12 test cases (see 

Figure 7).  

What is the impact of the initial temperature 

setting on the performance of the robust 

MGFI? 

Our findings indicate that the initial 

temperature setting is problem-dependent 

and should be configured with 

hyperparameters optimization in practical 

scenarios (see Table 8) 

When and how to transfer knowledge in 

dynamic multi-objective optimization 

(DMOO)? 

 

By comparing the quality of transferred 

solutions and those without transfer on a set 

of benchmark problems with various 

environmental changes, it is found that the 

transfer fails on problems with fixed Pareto 

optimal solution sets, and under small 

environmental changes. Therefore, it is 

recommended to avoid transfer under these 



 

 

 

 

 

conditions. A mathematical proof 

demonstrates that the Gaussian kernel 

function in the existing algorithm is not 

ideal. Therefore, a linear kernel is proposed 

to replace the Gaussian one. 

How to improve the efficiency of transfer 

learning in DMOO and whether the 

improved 

efficiency will affect the quality of 

transferred solutions? 

Transfer learning is found to be very time-

consuming as the 'inner' optimization 

method in transfer learning is very costly. 

Two alternative optimization methods can 

replace the existing 'inner' optimization 

method to improve the efficiency of the 

transfer learning. Experimental results show 

that the greatly enhanced efficiency does not 

result in huge degeneration on the 

performance of transfer learning. 

  



 

 

 

 

 

1. Introduction 
 

ECOLE aims at shortening the product-development cycle, reducing the resource consumption 

during the complete process, and creating more balanced and innovative products in engineering 

and ICT sectors, where the following practical difficulties must be addressed: learning and mining 

with imbalanced data sets, automatic algorithm configuration and hyperparameter optimization, 

optimization of expensive-to-evaluate black-box problems in the presence of uncertainty and 

noise, and dynamic multi-objective optimization.  

 

1) Learning and mining in the presence of imbalanced data sets pose additional challenges. 

Traditional classification techniques, e.g., logistic regression, intrinsically pay more 

attention to the majority class. In contrast, in practical applications of imbalanced learning, 

the minority class is of much more importance, e.g., rare-disease identification in electronic 

healthcare data sets and fraud detection in financial applications. In ECOLE, one of the 

principal aims is to improve the classification accuracy of the minority class without losing 

so much the accuracy of the majority class for practical scenarios. 

2) The practical applications of machine learning and continuous optimization in the 

engineering and ICT sectors emphasize efficiency. Hence, it is necessary to automatically 

learn the best configurations of machine learning and optimization algorithms with 

considerably less human effort. Therefore, this topic in ECOLE encompasses proposing, 

evaluating, and comparing techniques to automatically configure the best algorithms and 

hyperparameters for machine learning applications. 
 

3) When solving real-world optimization problems, a frequently-encountered obstacle is the 

presence of uncertainties and noise within the system, or model of the system, for which 

optima are sought. Uncertainties or noise can affect the objective landscape significantly 

[3]. Therefore, the nominal optimum found by the common optimization algorithms may 

not be optimal for practical applications where unexpected drift and changes can occur. 

Uncertainties or noise can also affect the accuracy and convergence speed of optimization 

algorithms [3] [4], thereby directly affecting the quality of the optimal solution. In ECOLE, 

one of the major aims is to propose, evaluate, and compare techniques for efficiently 

solving the noisy black-box problems with the help of surrogate models.  
 

4) Dynamic multi-objective optimization problems are a special class of multi-objective 

problems where the objectives change over time, making them extremely difficult to 

optimize directly [5]. In practical scenarios of continuous optimization, the optimization 

problems are related with each other. Therefore, employing the notion of similarity, one 

can, in principle, extract knowledge gained from solving one problem to help solving 

another related problem. In ECOLE, one of the major aims is to propose, analyze and 

evaluate methods to transfer knowledge to efficiently solve dynamic multi-objective 

optimization problems. 

 



 

 

 

 

 

This report summarizes the implementations of solutions to the issues mentioned above and 

software development. The following publications are contributing to this report: 

 

• S. Ullah, H. Wang, S. Menzel, B. Sendhoff, and T. Bäck, "An Empirical Comparison 

of Meta-Modeling Techniques for Robust Design Optimization", in IEEE Symposium 

Series on Computational Intelligence, Xiamen, 2019. 

• S. Ullah, et al., "Exploring Dimensionality Reduction Techniques for Efficient 

Surrogate-Assisted Optimization", in IEEE Symposium Series on Computational 

Intelligence, Canberra, 2020. 

• S. Ullah, H. Wang, S. Menzel, B. Sendhoff, and T. Bäck, "A New Acquisition Function 

for Robust Bayesian Optimization of Unconstrained Problems", in Genetic and 

Evolutionary Computation Conference Companion, Lille, 2021. 

• J. Kong, W.J. Kowalczyk, S. Menzel and T. Bäck, "Improving Imbalanced 

Classification by Anomaly Detection", in Sixteenth International Conference on 

Parallel Problem Solving from Nature, Leiden, 2020. 

• J. Kong, et al., "On the Performance of Oversampling Techniques for Class Imbalance 

Problems", in 24th Pacific-Asia Conference on Knowledge Discovery and Data Mining, 

Singapore, 2020. 

• D. A. Nguyen, et al., "Improved Automated CASH Optimization with Tree Parzen 

Estimators for Class Imbalance Problems", in IEEE International Conference on Data 

Science and Advanced Analytics, Porto, 2021. 

• G. Ruan, L. L. Minku, S. Menzel, B. Sendhoff, and X. Yao, "When and how to transfer 

knowledge in dynamic multi-objective optimization", in IEEE Symposium Series on 

Computational Intelligence, Xiamen, 2019. 

• G. Ruan, L. L. Minku, S. Menzel, B. Sendhoff, and X. Yao, "Computational Study on 

Effectiveness of Knowledge Transfer in Dynamic Multi-objective Optimization", in 

IEEE Congress on Evolutionary Computation, Glasgow, 2020. 

The remainder of this report is organized as following. Section 2 highlights the implementation 

and software-development for learning and mining with imbalanced data sets in ECOLE. Section 

3 presents the same information for automatic algorithm configuration and hyperparameters 

optimization. Section 4 illustrates the research and software-development for efficiently solving 

the noisy black-box problems, whereas section 5 emphasizes on the research and software-

development for transfer learning for dynamic multi-objective optimization. Lastly, section 6 

provides the overall summary and conclusion of the report, alongside the potential research 

challenges and opportunities. The structure of the code repositories for the above-mentioned 

publications is provided in the Appendix.  

 

 

  



 

 

 

 

 

2. Learning from Imbalanced Data 
 

The imbalanced classification problem has caught growing attention from both the academic and 

industrial fields. Technically, any dataset with an unequal class distribution is imbalanced. 

However, only datasets with a significantly skewed distribution are regarded to be imbalanced in 

the imbalanced learning domain [6]. This type of data will result in a reduction in the effectiveness 

of classical machine learning classification algorithms, because these algorithms assume that the 

distributions of the classes in the dataset are roughly equal [7]. When faced with significantly 

imbalanced data, these algorithms will be heavily biased towards the majority class and give 

deceptive accuracy. 

 

In real-world classification problems, there are many applications that suffer from the class-

imbalance problem, for instance, fault diagnosis, anomaly detection, medical diagnosis and etc. In 

these problems, it is much more important to correctly identify the minority samples. The price of 

misclassifying the minority samples would be a huge loss of money in fault diagnosis, an 

unqualified product in anomaly detection, and a person's life in medical diagnosis. An application 

example may also be illustrated in the field of computational design optimization [8], where 

product parameters are modified to generate digital prototypes, and the performances are usually 

evaluated through numerical simulations, which often require minutes to hours of computation 

time. Here, some parameter variations (minority number of designs) would result in effective and 

producible geometric shapes, but the given constraints are violated in the final step of optimization. 

In this case, applying proper imbalanced classification algorithms to the design parameters could 

save computation time. Hence, it is significant to improve the class-imbalance classification. 

 

This section of the report provides a summary of the research and software developed in ECOLE 

to efficiently improve the class-imbalance classification. Section 2.1 focuses on studying the 

efficiency of different resampling techniques as well as the relationship between data complexity 

measures and different resampling techniques. Section 2.2 explains the studies on improving 

imbalanced classification by adding additional attributes. The structure of the software developed 

for both studies is shared in the Appendix. 

 

2.1. On the Performance of Oversampling Techniques for Class Imbalance Problems 

 

Although over 90 sampling approaches have been developed in the imbalance learning domain, 

most of the empirical study and application work are still based on the "classical" resampling 

techniques. In this part of research, several experiments on 19 benchmark datasets are set up to 

study the efficiency of six powerful oversampling approaches, including both "classical" and new 

ones. Oversampling techniques that heavily reply on local information of the minority class 

samples are considered as "classical" resampling techniques (The synthetic minority over-

sampling technique (SMOTE), The adaptive synthetic (ADASYN), the majority weighted 

minority oversampling techniques (MWMOTE) [9] [10] [11], while oversampling techniques 

which take global information of minority samples are considered as "new" resampling techniques 

(RACOG, wRACOG, RWO-sampling) [1] [2]. In addition, seven data complexity measures are 

considered for the initial purpose of investigating the relationship between data complexity 

measures and the choice of resampling techniques. Detailed information has been reported in 



 

 

 

 

 

deliverables D1.2 and D3.1. We will focus on introducing the implementation of the experiment. 

 

The experimental setup for the study was implemented with the open-source software R. The 

required libraries include "smotefamily", "imbalance", "ECol", "C50", "dplyr", "pROC", 

"MLmetrics", "measures" and "e1071". The library "smotefamily" and library "imbalance" are 

used to implement the resampling techniques, including SMOTE, ADASYN, MWMOTE, 

RACOG, wRACOG, and RWO-sampling. The library "ECol" is used to calculate the data 

complexity of the datasets, and the library "C50" is used to perform the classification algorithm 

"Decision Tree". The other libraries are used to simplify the coding structure and produce the 

performance measurements. 

 

Table 1. List of Implemented Oversampling Techniques in R environment. 

Resampling R library Usage 

SMOTE smotefamily SMOTE(X, target, K = 5, dup_size = 0) 

ADASYN smotefamily ADAS(X, target, K=5) 

MWMOTE imbalance mwmote(dataset, numInstances, kNoisy = 5, 
kMajority = 3, kMinority, threshold = 5, cmax 
= 2, cclustering = 3, classAttr = "Class")            

RACOG imbalance racog(dataset, numInstances, burnin = 100, lag 
= 20, classAttr = "Class") 

wRACOG imbalance wracog(train, validation, wrapper, slideWin = 
10, threshold = 0.02, classAttr = "Class") 

RWO-

sampling 

imbalance rwo(dataset, numInstances, classAttr = 
"Class") 

 

2.2. Improving Imbalanced Classification by Introducing Additional Attributes 

 

Although the anomaly detection problem can be considered as an extreme case of class imbalance 

problem, very few studies consider improving class imbalance classification with anomaly 

detection ideas. Most data-level approaches in the imbalanced learning domain aim to introduce 

more information to the original dataset by generating synthetic samples. However, in this part of 

the research, we gain additional information in another way by introducing additional attributes. 

We propose to introduce the outlier score and four types of samples (safe, borderline, rare, outlier) 

as additional attributes in order to gain more information on the data characteristics and improve 

the classification performance. 

 

Four resampling techniques are implemented in our experiment, including two oversampling 

techniques (SMOTE, ADASYN) and two undersampling techniques  −  One-Sided Selection 

(OSS), Neighbourhood Cleaning Rule (NCL) [12] [13]. The detailed information for these 

resampling techniques has been given in deliverables D1.2 and D3.1.  



 

 

 

 

 

 
Table 2. List of Implemented Resampling Techniques in Python 

Resampling Python 

packages 

Usage 

SMOTE imblearn class imblearn.over_sampling.SMOTE(*,sampling_stra
tegy='auto', random_state=None, k_neighbors=5, 
n_jobs=None) 

ADASYN imblearn class imblearn.over_sampling.ADASYN(*,sampling_str
ategy='auto', random_state=None, k_neighbors=5, 

n_jobs=None) 

OSS imblearn class imblearn.under_sampling.OneSidedSelection(*, s

ampling_strategy='auto', random_state=None, n_nei

ghbors=None, n_seeds_S=1, n_jobs=None) 

NCL imblearn class imblearn.under_sampling.NeighbourhoodCleaning

Rule(*, sampling_strategy='auto', n_neighbors=3, ki

nd_sel='all', threshold_cleaning=0.5, n_jobs=None

) 

 

The first introduced attributes "four types of samples" was first introduced by Napierala and 

Stefanowski [14]. Either majority or minority samples can be divided into different types: safe, 

borderline, rare examples, and outliers according to the local characteristics of the samples 

(reference). Given the number of neighbors k (odd), the label to a minority example can be assigned 

through the ratio of the number of its minority neighbors to the total number of neighbors (������� ) 
according to Table 3. The label for a majority of all examples can be assigned in a similar way. 

 
Table 3: Rules to assign the four types of minority examples. 

 
 

Local outlier factor (LOF), which indicates the degree of a sample being an outlier, was first 

introduced by Breunig et al. in 2000 [15]. The LOF of an object depends on its relative degree of 

isolation from its surrounding neighbors. Several definitions are needed to calculate the LOF and 

are summarized in the following Algorithm 1. 

 

According to the definition of LOF, a value of approximately 1 indicates that the local density of 

data point �� is similar to its neighbors. A value below 1 indicates that data point �� locates in a 

relatively denser area and does not seem to be an anomaly, while a value significantly larger than 

1 indicates that data point �� is alienated from other points, which is most likely an outlier. 



 

 

 

 

 

 
Algorithm 1: Local outlier factor (LOF) algorithm [15]. 

 
 

Code example to calculate LOF and visualization 

 
import numpy as np 

import matplotlib.pyplot as plt 
from sklearn.neighbors import LocalOutlierFactor 

 
print(__doc__) 

 
np.random.seed(42) 

 
# Generate train data 
X_inliers = 0.3 * np.random.randn(100, 2) 

X_inliers = np.r_[X_inliers + 2, X_inliers - 2] 
 

# Generate some outliers 

https://scikit-learn.org/stable/auto_examples/neighbors/plot_lof_outlier_detection.html


 

 

 

 

 

X_outliers = np.random.uniform(low=-4, high=4, size=(20, 2)) 
X = np.r_[X_inliers, X_outliers] 

 
n_outliers = len(X_outliers) 

ground_truth = np.ones(len(X), dtype=int) 
ground_truth[-n_outliers:] = -1 

 
# fit the model for outlier detection (default) 

clf = LocalOutlierFactor(n_neighbors=20, contamination=0.1) 
# use fit_predict to compute the predicted labels of the training samples 

# (when LOF is used for outlier detection, the estimator has no predict, 
# decision_function and score_samples methods). 

y_pred = clf.fit_predict(X) 
n_errors = (y_pred != ground_truth).sum() 

X_scores = clf.negative_outlier_factor_ 
 

plt.title("Local Outlier Factor (LOF)") 
plt.scatter(X[:, 0], X[:, 1], color='k', s=3., label='Data points') 
# plot circles with radius proportional to the outlier scores 

radius = (X_scores.max() - X_scores) / (X_scores.max() - X_scores.min()) 
plt.scatter(X[:, 0], X[:, 1], s=1000 * radius, edgecolors='r', 

            facecolors='none', label='Outlier scores') 
plt.axis('tight') 

plt.xlim((-5, 5)) 
plt.ylim((-5, 5)) 

plt.xlabel("prediction errors: %d" % (n_errors)) 
legend = plt.legend(loc='upper left') 

legend.legendHandles[0]._sizes = [10] 
legend.legendHandles[1]._sizes = [20] 

plt.show() 
 

 
Figure 1. Demonstration of the Local Outlier Factor (LOF) method, in which the outlier score of a data point  can 

be intuitively understood as the inverse of the average distance to its k-nearest neighbors.   



 

 

 

 

 

3. Automated Machine Learning 
 

In the context of applying machine learning in many real-world applications, researchers have to 

make several high-level decisions: choose a machine learning model such as a learning algorithm 

(i.e., classification or regression algorithm), different preprocessing techniques (data 

preprocessing, feature preprocessing), and select a well-suited configuration to their problem, as 

depicted in Figure 2. These tasks are complicated and crucially required human efforts: to choose 

the best fit model and well-suited hyperparameter settings for an application problem. Automated 

machine learning (AutoML) [16, 17] optimization is an efficient approach to limit human efforts 

in applying machine learning to real-world problems, making machine learning easy to use and 

accessible to non-experts. 

 

In ECOLE, many practical approaches have been developed in machine learning domains, e.g., 

imbalanced classification, robust optimization, and various real-world applications. In order to 

apply the research achievements of ECOLE in solving real-world problems efficiently, we 

contemplated an automated configuration approach for above-mentioned tasks, based on the 

existing works and achievements of ECOLE. This section is dedicated to  the software developed 

for this aim. 

 

 

 
Figure 2. A typical machine learning workflow 

 

3.1. Automatically Optimize the Class Imbalance Problems 

The class imbalance is present in many real-world applications. For example, fault detection is a 

typical example of the imbalanced classification problem in the manufacturing industry since most 

products are correctly produced, and only a few products are faulty. Therefore, the highly 

imbalanced nature between the defect and non-defect modules cannot be neglected in software 

defect prediction.  

 

In this work, we provide a summary of the software developed in ECOLE to efficiently solve the 

class imbalance problem automatically [18, 19]. Our software comprises three major parts: 

1. A search space is defined to represent the feasible search domain. In ECOLE, we use the 

combination of resampling technique and classification algorithm to handle the class 

imbalance problem. In this setting, the resampling techniques were used to producing 

balanced data sets before classifying this dataset by a commonly used classification 

algorithm. The search space is described in the following: 

• Classification algorithms: Our software includes five classification algorithms, i.e., 

Support Vector Machines (SVM), Random Forest (RF), K-Nearest Neighbours 



 

 

 

 

 

(KNN), Decision Tree (DT), and Logistic Regression (LR). All are implemented in 

the python package scikit-learn, described in Table 5. 

• The resampling algorithms used in our software can be arranged into three groups, 

namely "over resampling" (7 techniques [20, 21, 22, 23, 9, 10]), "under resampling" 

(11 techniques [24, 25, 26, 27, 28, 29, 30, 31, 12, 13]), and "combine resampling" 

(2 techniques [32, 33]), which are implemented in the python package imbalanced-

learn1 [34]. The detailed information on the resampling techniques used in our 

software and their hyperparameters are presented in Table 4. 

2. A target program is used to assess the selected machine learning pipeline generated by the 

optimizer on the examined dataset, resulting in a performance evaluation metric (here is 

geometric mean). The whole computation process consists of the following two phases: 

• Static process: For one dataset, categorical variables of the input are converted to 

integers by the widely-used Label encoder2, which is then standardized. Next, a 

stratified k-fold cross-validation using k =5 is used. 

• Dynamic process: At each iteration, the optimizer generates a hyperparameter 

setting in the search space, which includes the selected resampler and classifier, 

with the selected resampler being applied to each fold to make it balanced and 

applied the classifier to the balanced fold. This process in the gray circle is based 

on the geometric mean. 

 
Figure 3. Flowchart of the ECOLE software for class imbalance problems. 

 

3. An optimization algorithm is used to find the best pipeline and optimized hyperparameter settings 

in the feasible domain defined in the search space. In ECOLE, we applied a special type of  

Bayesian optimization approach, the Tree Parzen Estimators (or Tree-structured Parzen 

Estimators), which is implemented in the Python package HyperOpt3. 

 

 
1 https://github.com/scikit-learn-contrib/imbalanced-learn (version 0.7.0) 
2 Label encoder, Standard scaler and Stratified k-fold cross-validation are implemented in the python library scikit-

learn (version 0.23.2) 
3 https://github.com/hyperopt/hyperopt 

https://github.com/scikit-learn-contrib/imbalanced-learn


 

 

 

 

 

Table 4. Hyperparameters of resampling techniques 

Algorithm Hyperparameter Range 

Over-Resampling 

SMOTE 

k_neighbors [1, 10] 

sampling_strategy default 

BorderlineSMOTE 

k_neighbors   [1, 10] 

m_neighbors [1, 10] 

sampling_strategy default 

kind [borderline1, borderline2] 

SMOTENC 

sampling_strategy default 

k_neighbors [1, 10] 

SVMSMOTE 

sampling_strategy default 

k_neighbors   [1, 10] 

m_neighbors [1, 10] 

out_step [0.0, 1.0] 

KMeansSMOTE 

sampling_strategy default 

k_neighbors   [1, 10] 

cluster_balance_threshold [1e-2, 1] 

ADASYN 

sampling_strategy default 

n_neighbors   [1, 10] 

 

Combine-Resampling 

SMOTENN sampling_strategy default 

SMOTETomek sampling_strategy default 

 

Under-Resampling 

CondensedNearestNeighbour 

n_neighbors   [1, 50] 

sampling_strategy default 

n_seeds_S [1, 50] 

EditedNearestNeighbours 

n_neighbors   [1, 20] 

sampling_strategy default 

return_indices [True, False] 

kind_sel [all, mode] 

RepeatedEditedNearestNeighbours 

sampling_strategy default 

kind_sel [all, mode] 

n_neighbors   [1, 20] 

AllKNN 

n_neighbors   [1, 20] 

sampling_strategy default 

kind_sel [all, mode] 

allow_minority [True, False] 



 

 

 

 

 

Algorithm Hyperparameter Range 

InstanceHardnessThreshold 

estimator 

None, knn, decision-tree, 

adaboost, gradient-boosting, 

linear-svm 

sampling_strategy default 

cv [2, 10] 

OneSidedSelection 

 

sampling_strategy default 

n_neighbors   [1, 20] 

n_seeds_S   [1, 20] 

RandomUnderSampler 

sampling_strategy default 

replacement [True, False] 

TomekLinks sampling_strategy default 

NearMiss 

sampling_strategy default 

version [1,3] 

n_neighbors   [1, 20] 

n_neighbors _ver3 [1, 20] 

NeighbourhoodCleaningRule 

sampling_strategy default 

threshold_cleaning [0.0, 1.0] 

n_neighbors   [1, 20] 

ClusterCentroids 

sampling_strategy default 

estimator [KMeans, MiniBatchKMeans] 

voting [hard, soft] 

 
Table 5. Hyperparameters of Classification algorithms 

Algorithm Hyperparameter Range 

Support Vector 

Machines (SVM) 

Max_iter 10000 

Cache_size 700 (Megabyte) 

probability [True, False] 

C [0.55,100] 

kernel [linear, rbf, poly, sigmoid] 

shrinking [true, false] 

gamma [auto, value, scale] 

gamma_value [3.1e-05,8] 

coef0 [-1.0, 1.0] 

degree [2, 5] 

tol [1e-05, 1e-01] 

Random Forest (RF) 

n_estimators [1,150] 

criterion [gini, entropy]  

max_features [1, sqrt, log2, None] 

min_samples_split [2, 20] 

min_samples_leaf [1, 20] 



 

 

 

 

 

Algorithm Hyperparameter Range 

bootstrap [True, False] 

class_weight [balanced, balanced_subsample, None] 

K-Nearest Neighbors 

(KNN) 

n_neighbors [1, 51] 

weights [uniform, distance] 

algorithm [auto, ball_tree, kd_tree, brute] 

p [0, 20] 

• p = 0 → metric = chebyshev 

• p = 1 →  metric = manhattan 

• p = 2 → metric = euclidean 

• p > 2 → metric = minkowski 

Decision Tree (DT) 

criterion [gini, entropy]  

max_depth [2, 20] 

max_features [1, sqrt, log2, None] 

min_samples_split [2, 20] 

min_samples_leaf [1, 20] 

Logistic Regression 

(LR) 

C [1, 150] 

criterion [0.55,100] 

tol [1e-05, 1e-01] 

l1_ratio [1e-09, 1] 

(penalty, solver) [(l1, liblinear), (l1, saga), (l2, lbfgs), 

(l2, newton-cg), (l2, liblinear), 

(l2, sag), (l2, saga), (elasticnet, saga), 

(none, newton-cg), (none, lbfgs), 

(none, sag), (none, saga)] 

  



 

 

 

 

 

4. Model-Assisted Robust Optimization 
 

While solving real-world optimization problems, a frequently-encountered obstacle is the presence 

of uncertainties and noise within the system, or model of the system, for which optima are sought 

[4]. Due to various reasons, various types of uncertainties and noise can emerge in optimization 

problems. Hence, for real-world scenarios, optimization methods are needed which can deal with 

these uncertainties, and solutions have to be found which are not only optimal in the theoretical 

sense, but that are also practical in real life. The practice of optimization that accounts for 

uncertainties and noise is often referred to as Robust Optimization (RO) [35] [3] [36]. 

 

In real-world engineering applications, e.g., automobile manufacturing, building construction, and 

steel production, finding a robust solution – a solution whose performance is not significantly 

affected by uncertainties – is crucial due to the potentially serious impact in case of a failure. 

Despite the significance, however, achieving robustness in modern engineering applications is 

challenging. This can be mainly attributed to the variety of fitness landscapes and high 

dimensionality, as well as many shapes and forms of uncertainty, which are often unknown in 

advance. In practice, optimization scenarios in these domains are often treated as black-box 

problems, which have to be efficiently solved in the face of uncertainties and noise. In ECOLE, 

RO problems are solved with the help of empirical (statistical) models, which are called Surrogate 

Models. These models replace the actual (expensive) function evaluations by their predictions, 

thereby helping to efficiently solve the problem [36].  

 

This section of the report provides a summary of the research and software-development to tackle 

the expensive to evaluate black-box problem, subject to uncertainty and noise. The first subsection 

focuses on assessing the suitability of the surrogate models to solve RO problems [37]. This is 

followed by the details on exploring the dimensionality reduction techniques for efficiently 

constructing the low dimensional surrogate models [38]. Finally, latest results are reported on 

extending an infill criterion that underpins Bayesian Optimization (BO) to the robust scenario [39]. 

The structure of the code repositories for all three studies is included in the Appendix. The overall 

aim of this section is to provide the fundamental details on the implementation of Surrogate-

Assisted Optimization (SAO) in ECOLE. 

 

4.1. Investigation of Modelling Techniques for Robust Optimization 

Surrogate Models were initially employed to find the nominal solution of expensive to evaluate 

black-box problems, without taking into account the unexpected drifts and changes in the 

optimization setup. However, this is unrealistic for many real-world scenarios. As such, a natural 

question arises on the applicability of the SAO to find solutions that are immune to uncertainty 

and noise. To answer this question, an empirical study was conducted in ECOLE [5]. The study 

took into account the impact of some of the most important factors, such as the dimensionality, the 

type and structure of the uncertainty, the noise level, and the problem landscape. 

 

The experimental setup for this study was implemented with the help of open-source Python 

frameworks such as "SciPy", "NumPy", "scikit-learn" and "pyDOE". In particular, "scikit-learn" 

was utilized to implement the modeling techniques [40] [41] such as Kriging/Gaussian Process 



 

 

 

 

 

Regression (GPR), Regression Trees (RT), Support Vector Machines (SVMs), Quadratic 

Polynomials (QP), K-Nearest Neighbors (KNN), and Radial Basis Functions (RBFs). The other 

modules, in particular, "NumPy" was utilized to implement the test problems, such as Ackley, 

Sphere, and Rastrigin functions. Finally, "pyDOE" was utilized to implement Design of 

Experiment (DoE) methodologies such as Latin Hypercube Sampling (LHS). The experimental 

setup for this study is presented in  Figure 4 for further clarification. 

 

  
 

Figure 4. The experimental setup to investigate the suitability of some of the most important modeling techniques for 

Robust Optimization [37]. 

Table 6 presents the major open-source Python frameworks utilized in this study. Further details 

on the study and the experimental setup are provided in ECOLE Deliverable 2.3, titled "Robustness 

& Uncertainty Modelling in experience-based optimization", whereas the details on the structure 

of the code are provided in the Appendix. 

 
Table 6. List of major open-source software modules utilized in the experimental setup [37]. 

Open-source Software Module Major Purpose 

NumPy (Version 1.16.0) To implement the test problems. 

PyDOE  (Version 0.3.8) To implement LHS. 

 

Scipy (Version 1.2.1) 

To implement the (global) optimization 

algorithms, e.g., Sequential Quadratic 

Programming. 

Scikit-learn (Version 0.20.0) To implement the modeling techniques, e.g., 

Kriging. 

 

4.1. Investigation of Dimensionality Reduction Techniques for Efficient SAO 

 

Constructing surrogate models of high-dimensional optimization problems is challenging due to 

the computational complexity involved. The computational complexity can be mainly attributed 

to two main factors. Firstly, more training data is required to achieve a comparable level of 

modeling accuracy as the dimensionality increases. Secondly, training-time-complexity often 

increases rapidly with respect to both, the dimensionality and the number of training data points. 

Consequently, constructing the surrogate model becomes costlier. Various methodologies have 

been proposed to deal with the issue of high dimensionality in SAO, including divide-and-conquer, 

variable screening, and mapping the data space to a lower-dimensional space using dimensionality 

reduction techniques (DRTs). 

 

One of the most common DRTs is Principal Component Analysis (PCA) [40] [41]. PCA can be 

defined as the orthogonal projection of the data onto a lower-dimensional linear space, spanned by 

the principal components, such that the variance of the projected data is maximized. Various 

https://numpy.org/
https://pythonhosted.org/pyDOE/
https://www.scipy.org/
https://scikit-learn.org/stable/


 

 

 

 

 

generalized extensions of PCA have been established in the literature, such as Kernel PCA, 

Probabilistic PCA, and Bayesian PCA [40]. On the other hand, Autoencoders (AEs) [41] have 

been introduced as feed-forward neural networks (FFNNs), which are trained to copy their input 

to their output, so as to learn the useful low dimensional encoding of the data. Like PCA, AEs 

have also been extended over the years by generalized frameworks such as Sparse Autoencoders, 

Denoising Autoencoders, Contractive Autoencoders [41] and Variational Autoencoders (VAEs) 

[42] [43]. Besides PCA and AEs, other important DRTs include Isomap [40], Locally-Linear 

Embedding [44], Laplacian Eigenmaps [45], Curvilinear component analysis [46], and t-

distributed stochastic neighbor embedding [41]. 

 

As several DRTs have been employed in the literature, a natural question arises on the suitability 

of some of the most important DRTs for efficiently constructing the low dimensional surrogate 

models. To this end, an empirical investigation was conducted in ECOLE [38]. In this study, four 

of the most important DRTs mentioned above, namely PCA, Kernel PCA, AEs and VAEs 

respectively, were evaluated and compared with each other. PCA and AEs were chosen due to 

their historical significance, since both have been employed regularly for dimensionality reduction, 

lossy data compression, feature learning and data visualization in machine learning [40] [41]. 

Kernel PCA was incorporated due to the generalized non-linear extension of the classical PCA 

algorithm. Similarly, VAEs were considered due to the presence of the non-linear stochastic 

encodings of the data space, which can be utilized for constructing the surrogate models efficiently. 

This study focused on providing a novel perspective on the applicability of these DRTs in SAO. 

This was accomplished by performing an experimental study of the corresponding low 

dimensional surrogate models (LDSMs) on a diverse range of test cases.  

 

The experimental setup for this study was based on ten unconstrained, noiseless, single-objective 

optimization problems from the continuous benchmark function test-bed known as "Black-Box-

Optimization-Benchmarking" (BBOB) [47]. Each of these test functions was evaluated on three 

different values of dimensionality – 50, 100, and 200, respectively. Note that all test functions 

mentioned were subject to minimization. Four DRTs were employed − PCA, KPCA, AEs, and 

VAEs. For each of these techniques, specifying the size of the latent dimensionality was crucial 

since it could affect the quality of the corresponding LDSM. Therefore, for each distinct value of 

dimensionality, three different settings of the latent dimensionality were chosen. 

 

 In AEs and VAEs, both the encoder and the decoder had four hidden layers each with hyperbolic 

tangent non-linearity. For PCA and KPCA, a linear transformation of the original features was 

computed before performing the dimensionality reduction. Two (surrogate) modeling techniques 

were chosen − Kriging and Polynomial Regression (degree=2 with elastic-net penalty). Notably, 

both sets of techniques − the DRTs and the modeling techniques, had some hyperparameters. 

Therefore, it was crucial to tune these hyperparameters to get the best quality surrogate models. 

The flowchart of the experimental setup for this study [38] is presented in Figure 5.  
 



 

 

 

 

 

 
Figure 5. Flowchart of the experimental setup. Each step of the process is shown in grey rectangles. The central 

rectangles indicate the hyperparameter optimization loop based on the modeling accuracy of the surrogates. 

 

The experimental setup for this study was also carried out with the help of open-source Python 

frameworks such as "SciPy", "NumPy", "scikit-learn" and "pyDOE". In addition to that, the 

famous Python framework "PyTorch" was employed for the realization of AEs and VAEs. In the 

setup, "scikit-learn" was utilized to implement the modeling techniques – Kriging and QP with 

elastic-net penalty – as well as two DRTs, namely the PCA and Kernel PCA. To implement the 

test problems, the code provided by BBOB [47] was utilized. Lastly, to implement the 

hyperparameter optimization (HPO), another open-source Python framework "Hyperopt" was 

used. Table 7 reports the major open-source Python frameworks utilized in this study, whereas 

further details on the study and the experimental setup are provided in ECOLE Deliverable 2.1, 

titled "Experience-based high dimensional and big data assisted optimization". Furthermore, the 

details on the structure of the code are provided in the Appendix. 

 
Table 7. List of major open-source software modules utilized in the experimental setup in [38]. 

Open-source Software Module Major Purpose 

PyTorch (Version 1.5.0) To implement AEs and VAEs. 

PyDOE  (Version 0.3.8) To implement LHS. 

Scipy (Version 1.5.0) To implement the global optimization 

algorithms, e.g., L-BFGS. 

 

Scikit-learn (Version 0.23.0) 

To implement the modelling techniques, e.g., 

Kriging, as well as PCA and Kernel PCA. 

BBOB To implement the test problems. 

Hyperopt (Version 0.2.4) To perform HPO. 

 

4.2. Extending the Moment-Generating Function of Improvement (MGFI) for Robust 

Bayesian Optimization (RBO) 

 

The famous Bayesian Optimization (BO) algorithm [16] has been adapted to efficiently solve RO 

problems, and is referred to as Robust Bayesian Optimization (RBO) in this report. The 

performance of the RBO algorithm is greatly determined by the acquisition function (AF), which 

balances the trade-off of exploration and exploitation. Furthermore, following the intuition of 

utilizing the higher moment of the improvement in ECOLE, the Moment-Generating Function of 

the Improvement (MGFI) [17] was extended to efficiently solve problems with uncertainty [7]. 

The flowchart of the RBO algorithm is presented in Figure 6. 

https://pytorch.org/
https://pythonhosted.org/pyDOE/
https://www.scipy.org/
https://scikit-learn.org/stable/
https://coco.gforge.inria.fr/
https://github.com/hyperopt/hyperopt


 

 

 

 

 

 
Figure 6. The flowchart of the RBO algorithm. Steps 6 and 7 are adapted to extend the BO algorithm to the robust 

scenario. 

To gauge the ability of the extended MGFI, we evaluated and compared it against the baseline – 

the robust expected improvement criterion (REIC) proposed in [48]. The comparison [39] involved 

four test problems in total, all taken from the existing literature. Three of these problems, the so-

called "Three", the "Eight" and the "Ten-Dimensional" problems were taken from [48], in addition 

to a two-dimensional "Branin" function. The comparison also involved three noise levels based on 

5, 10 and 20 % deviation in the nominal values of the decision variables, giving rise to a total of 

12 test scenarios for comparison. In addition to the baseline comparison, the configuration of the 

initial temperature was altered to comprehend the role it played in the performance of the extended 

AF. To this end, only the "Branin" and the "Three-Dimensional" problems were chosen alongside 

three different configurations for the initial temperature.  

 

Graphs pertaining to the baseline comparison are presented in  Figure 7. Note that each column of 

plots in this figure corresponds to a specific noise level, whereas the rows distinguish between 

different problem instances. The noise level determines the maximum deviation from the nominal 

values of the decision variables. Each subplot in this figure presents two curves based on the two 

AFs. Each of these curves indicates the mean absolute difference (MAD) to the globally robust 

optimal function value (GROFV) based on 25 independent runs. From Figure 7, we observe that 

in 6/12 cases, the extended MGFI (denoted as RMGFI in the figure) yielded a better optimal 

function value, whereas the implementation with the REIC performed superior in 5/12 cases. In 

particular, the REIC exceeded the RMGFI for all three test scenarios related to the "Branin" 

function, whereas the RMGFI performed better on the "Three-Dimensional" problem. 

Additionally, it can be observed that both acquisition functions performed competitively on the 

third noise level. Note that in the test scenarios of the "Eight" and the "Ten-Dimensional" problems 

concerning the first noise level, the RMGFI undershooted the GROFV.  



 

 

 

 

 

 
Figure 7. Mean Absolute Difference to the globally robust optimal function value based on the extended RMGFI and 

the baseline REIC. 

Next, the results based on the variation of the initial temperature are presented in Table 8. In this 

table, the first column reads the optimization problem at hand, whereas the next three columns 

describe the noise level, initial temperature, and the MAD to the GROFV accompanied with the 

standard error (SE). An important observation from Table 8 suggests that for the "Branin" function, 

the best performance was achieved for the low initial temperature. On the other hand, the higher 

settings for the initial temperature gave rise to a better performance on the "Three-Dimensional" 

problem.  

 
Table 8. Mean Absolute Difference (MAD) to the globally robust optimal function value based on three different 

settings of the initial temperature. 

Problem Noise Level Initial Temperature MAD 

 

 

 

 

Branin 

 

5 % 

1 8.08 ± 1.44 

3 8.87 ± 1.59 

5 8.31 ± 1.48 

 

10 % 

1 7.78 ± 2.23 

3 8.46 ± 2.22 

5 7.81 ± 2.18 

 

20 % 

1 5.88 ± 0.85 

3 6.20 ± 1.01 

5 6.09 ± 1.01 

 

 

 

 

 

5 % 

1 6.58 ± 1.09 

3 5.66 ± 0.90 

5 5.83 ± 0.95 

 1 5.61 ± 0.79 



 

 

 

 

 

Three-Dimensional 10 % 3 5.27 ± 0.55 

5 5.75 ± 0.75 

 

20 % 

1 21.01 ± 2.02 

3 20.15 ± 1.81 

5 19.63 ± 1.91 

 

The experimental setup for the study was carried out with the help of open-source Python 

frameworks such as "SciPy", "NumPy", "SMT", "scikit-learn" and "pyDOE2". In particular, 

"scikit-learn" was utilized to realize the Kriging model. "NumPy" and "SMT" were utilized to 

implement the test problems. "SciPy" was utilized to implement the global optimization algorithm, 

i.e., L-BFGS. Finally, "pyDOE2" was utilized to implement the LHS for DoE. Table 9 reports the 

major open-source Python frameworks utilized in this study, whereas the details on the structure 

of the software are provided in the Appendix. 

 
Table 9. List of major open-source software modules utilized in the experimental setup in [39]. 

Open-source Software Module Major Purpose 

NumPy (Version 1.20.0) To implement the utility functions and test 

problems. 

pyDOE2 (Version 1.3.0) To implement LHS. 

Scipy (Version 1.6.1) To implement the global optimization 

algorithms, e.g., L-BFGS. 

Scikit-learn (Version 0.24.0) To implement Kriging. 

SMT (Version 1.0.0) To implement the test problems. 

 

 

 

 

  

https://numpy.org/
https://pypi.org/project/pyDOE2/
https://www.scipy.org/
https://scikit-learn.org/stable/
https://smt.readthedocs.io/en/latest/index.html


 

 

 

 

 

5. Knowledge Transfer in Dynamic Multi-Objective Optimization 
 

Transfer learning [49] is a machine learning method that is able to transfer the knowledge from a 

source task to a target task. This inherent characteristic of transfer learning makes it intuitive to 

apply to explore useful experiences that have been obtained in one task (optimization problem) to 

help solve another related task. Consequently, computational efficiency can be gained while 

tackling expensive-to-evaluate DMOO problems. The key challenge in DMOO is to constantly 

trace a changing Pareto optimal front (POF) and/or Pareto optimal set (POS) before the next 

environmental change occurs [50]. Aiming at this goal, researchers have proposed a method which 

predicts [50] [51] the good solutions in the next environment after learning the regularity of the 

environmental changes. In most prediction-based approaches, it is implicitly assumed that the 

evolution of the solutions used to train and test the prediction model obeys a fixed independent 

and identical probability distribution. However, this is not always true under dynamic 

environments in optimization, since the environmental changes may result in different evolution 

patterns over time. Consequently, the prediction model based on the incorrect assumption may 

cause inaccurate predictions of optimal solutions. Transfer learning, which does not make this 

assumption, is a good candidate for solving DMOO problems if it can learn and exploit the 

relationship among different problems.  

 

So far, there has only been one attempt to introduce transfer learning to solve DMOO problems 

with evolutionary algorithms (EAs), resulting in a technique referred to as "Transfer learning based 

dynamic multi-objective optimization algorithms" (Tr-DMOEAs) [52]. Even though experimental 

studies [52] have shown the superiority of Tr-DMOEAs over the state-of-the-art in addressing 

DMOO problems, the results also showed that Tr-DMOEA does not always work well and is time-

consuming. It is therefore important to understand why and when transfer learning does not work 

well. Only after understanding that, we can make some improvements regarding transfer learning 

in DMOO. In addition, it is also important to understand what is the most time-consuming part in 

Tr-DMOEA, after which we are able to take specific actions to increase the computational 

efficiency of Tr-DMOEA. 

 

This section of the report provides a summary of the research and software-development in 

ECOLE to improve the effectiveness and the efficiency of knowledge transfer in DMOO. Section 

5.1 aims to answer the research question: when and how to transfer knowledge in DMOO, such 

that the Tr-DMOEAs algorithm is able to find solutions with better quality than the baseline 

methods. Section 5.2 illustrates a computational study on the cost and performance of knowledge 

transfer in DMOO, so as to verify whether two alternatives of the existing optimization method 

for the 'inner' problem in transfer learning are able to improve the efficiency of Tr-DMOEA. 

 

5.1.  When and How to Transfer Knowledge in Dynamic Multi-objective Optimization? 

 

Considering the general process of transfer learning, there are three main components as following:  

• What to transfer?  

• When to transfer?  



 

 

 

 

 

• How to transfer?  

In terms of the first question, good solutions found for the previous environment are typically 

aimed to be transferred to the next environment in DMOO. However, there are no straightforward 

answers to the other two questions. Generally, whenever a new environmental change happens, 

there is a population that has already been optimized to the previous environment. To check 

whether transfer learning works, we compare the quality of the following solutions on the new 

environment: 

• Transferred solutions 

•  Solutions copied from the previously optimized population. 

For transfer learning to be considered as successful, the new solution should be of at least similar 

(and ideally better) quality as opposed to the solution on the new environment. 

To gauge the effectiveness of transfer learning, an experimental study is conducted in ECOLE to 

compare Tr-RMMEDA and RMMEDA where RMMEDA [53] refers to the so-called "Regularity 

model-based multi-objective estimation of distribution algorithm". In DMOO, the key point is to 

find the optimal solutions as soon as possible before the next change occurs. In this case, the 

performance of the Tr-DMOEA depends on the quality of the generated solutions after each 

change. Therefore, if the transferred solutions are better than the copied solutions from the 

previous environment, we consider that transfer learning works well. On the contrary, if the 

transferred solutions are worse than the copied solutions, transfer learning fails. Experimental 

results have shown that the transferred solutions are all worse than those from the previous 

environment on problems with fixed POS and on problems with small changes.  

The main idea of Tr-DMOEA is to find a mapping function to map randomly generated solutions 

in the objective space of two problems at two consecutive environments by minimizing the 

distance between those two solution sets in the latent space. However, in the existing works, a 

Gaussian kernel function is used in the mapping function, which has been mathematically proved 

to be not ideal. Therefore, transfer learning fails in DMOO due to the Gaussian kernel. We propose 

an improved version of Tr-DMOEA, which applies an alternative kernel function that does not 

have the problem of Gaussian kernel function. Specifically, after each change, transferred solutions 

and copied solution from the previous environment are firstly combined together. After that, 

nondominated sorting and crowding distance in Non-dominated Sorting Genetic Algorithm-II 

(NSGA-II) [54] are used to rank the combined solutions on the new environment. After reviewing 

present common kernel functions [55] [56] [57], we find that the linear kernel functions overcome 

the problem presented by the Gaussian kernel function.  

 

The experimental setup for this study was implemented based on the original Tr-DMOEA under 

the environment of MATALB 2018b. The used benchmark functions are taken from [58]. For the 

parameters of these problems, there are 20 changes. In order to study the effectiveness of Tr-

DMOEAs in different dynamics, there are three dynamics with different severity of change (i.e., 

nt =10, 1 and 20). They represent the environmental changes are medium, large and small, 

respectively. Within each change, the population is forced to run 50 generations (i.e., τt = 50), 
which enables the population to converge. Inverted Generational Distance (IGD) is used to 

compare the performance of all solutions sets. 



 

 

 

 

 

5.2. Improving the Efficiency of Knowledge Transfer in Dynamic Multi-objective 

Optimization 
 

Transfer Component Analysis (TCA) is the main transfer learning method used in Tr-DMOEA. 

The time complexity of TCA and primal dual interior point has been analyzed in [52]. The major 

time cost of TCA is spent on the eigenvalue decomposition. This is the case when nonzero 

eigenvectors are to be extracted. In order to empirically verify the cost of TCA and interior point 

method, an initial experiment is conducted regarding the computation time of these two parts in a 

single run. An experimental design is taken to record the computation time of each component in 

Tr-DMOEA. The findings suggest that the interior point method consumes more computation time. 

It has been shown that the existing Tr-DMOEA is still extremely time-consuming. It is unclear if 

it is worthy to consume such long time to use transfer learning in DMOO. In order to figure out 

the answer of this question, another experimental setup is designed. The main idea behind this 

setup is to use the computation time of transfer learning to optimize randomly generated solutions. 

Whenever there is a change, transfer leaning is used to get the initial population, while another 

initial population is randomly generated in the search space. The costs of transfer learning and 

random generation are recorded, and termed as ��� and ���� respectively. The cost is the running 

time determined based on the stopwatch timer in MATLAB, where the MATLAB command 'tic' 

and 'toc' starts and ends the timer respectively. Then, the cost ��� −  ���� is used to optimize the 

randomly generated population. During the optimization, both the transferred population and 

random one will iterate for the same generations to get two optimized solutions. Experimental 

results have shown that, given the same cost budget, the quality of random solution is better than 

that of transferred solutions no matter whether at the first generation after environmental changes 

or at the last generation after optimization. 

Given that the computation time for solving the inner optimization problem in Tr-DMOEA is very 

large, it is unclear whether the efficiency of solving the inner problem could be enhanced. To 

explore this, other two popular optimization methods are used here, which are the active set [59] 

and sequential quadratic programming (SQP) [59] methods. We have further conducted a set of 

experiments to validate the efficiency and effectiveness of these three Tr-DMOEA variants. The 

computation time of three different optimization methods in these three Tr-DMOEA variants is 

only recorded when solving the inner problem, for all test problems with all parameter setting. The 

findings from this study suggest that for all test problems with picked parameter settings, the 

interior point method consumes the most time among the three compared methods to solve the 

inner optimization problem, while the active set method is the most efficient optimization 

algorithm. This shows that another two inner optimization methods can greatly improve the 

efficiency of transfer learning in DMOO. In order to verify whether the improved efficiency of Tr-

DMOEA affects the solution quality, these three Tr-DMOEA variants are compared on picked 

benchmark problems. The findings show that Tr-DMOEA with SQP achieves the best optimized 

solution quality after optimization. 

 

 

 

 



 

 

 

 

 

6. Summary and Outlook 
 

This deliverable report focuses on the implementation details and software-development regarding 

the work package 2.4 in ECOLE, namely, “Integrated software environment (Self-Tuning 

optimization) and manual”. All in all, this deliverable report concentrates on four main issues as 

following: 

• How to improve the classification accuracy of the minority class in imbalanced learning 

without significantly compromising on the accuracy of the majority class? 

• How to automatically perform algorithm configuration and hyperparameters optimization 

for efficiently applying the common machine learning and optimization algorithms? 

• How to efficiently solve the expensive to evaluate black-box problems in the presence of 

uncertainty and noise? 

• How to transfer knowledge for efficiently solving DMOO problems? 

To answer the first question, the efficacy of some of the most important oversampling techniques 

were analyzed in [8]. It was concluded that the oversampling techniques, which considered the 

minority class distribution helped improving the classification accuracy. Furthermore, it was found 

that the so-called "F1v" value – a measure for evaluating the overlap between the classes – had a 

strong negative correlation with the potential area-under-the-curve value in most cases. Lastly, the 

proposed approach to admit additional attributes helped improving the classification accuracy in 

imbalanced learning in most cases [60].  

 

For the issue of algorithm configuration and hyperparameters optimization, an approach was 
proposed in ECOLE [18] to automate the machine learning pipeline (with imbalanced 

classification problem as a particular use case). The empirical study to compare the results of the 

proposed approach with the baseline methods indicated the promising nature of the technique as it 

significantly improved the performance of the classification algorithms over the examined data 

sets. 

 

For efficiently solving the noisy black-box problems in ECOLE, an empirical study was designed 

to assess the suitability of the modeling techniques to find the robust solution [37]. The findings 

of this study indicated the usefulness of Kriging and Response-Surface Models (Polynomials). 

Furthermore, another study indicated the usefulness of PCA and AEs for efficiently constructing 

the low dimensional surrogate models [38]. The latest research on this topic focused on the BO 

algorithm by extending the MGFI to the robust scenario [39]. The potential future research line in 

this direction aims at providing a novel perspective on the so-called "Computational Cost of 

Robustness" – the need for additional computational resources to find the robust instead of a 

nominal solution. 

 

Transferring knowledge to efficiently solve DMOO problems is complex, as our findings 

demonstrate. The key problem lies in the Gaussian kernel, and our studies recommend the use of 

linear kernels in lieu of the Gaussian kernel. Our results also demonstrate the superiority of 

active-set method for solving the inner problem in knowledge transfer. Lastly, an empirical 

investigation on the running time suggests the expensive nature of interior method. 



 

 

 

 

 

Appendix  

 
1. User Manual for Section 2 
 

Code Workflow for Section 2.1 
 

Input: training samples' features, training samples' class 

Output: predicted class label 

Software and package: R, R package smotefamily, imbalance (open source) 

Code: available on https://doi.org/10.5281/zenodo.3855094 
 

Inline configuration : 

python imb_exp.r  --GPU<gpu_id> 
 

Configuration in the script : 

     Data set directory : <path>                           Random seed: <set.seed>                  

     Data set training split: stratified folds          Oversampling methods: <function> 

     Classifiers: C5.0 or SVM                             After-sampled IR (imbalance ratio): x in (0.8, 1] 

     Output directory: <path>                  
 

Script workflow 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

Box to represent directory/folders 

Box with this line is the main script 

Box with this line is the secondary script that the main script is calling 

Box with this line is a note for the datasets 

Function in the main script which is calling the secondary script 

Values that the secondary script return to the main script 

Notice for the directory/folders 

Main Script 

  Assign configurations 

  Load data set 

  Normalized data 

  Calculate data complexity 

  Assign classifiers 

  Training loop 

  Clear GPU and exit 

Data oversampling script 

Access data set directory 

Training/test data split with  

    stratified folds 

Assign oversampling method  

    and after-sampled IR 

Data set directory 

imb_bench_1 

             …… 

             Imb_bench_19 

             Vehicle_1 

             Vehicle_2 

             Vehicle_3 

Output directory 

AUC performance matrix (.csv) 

F1 performance matrix (.csv) 

Gmean performance matrix (.csv) 

Data complexity value for each 

training set (.csv) 

Data Pre-processing: 

1. The detailed information for the benchmark 

datasets can be found in paper [1], and the 

datasets can be downloaded from KEEL datasets 

repository [8]. 

2. Before the experiments, we changed the 

benchmark datasets format from .dat to .csv. 

Meanwhile, we changed the class label from 

{positive, negative} to {1, 0}.  

 

 

https://doi.org/10.5281/zenodo.3855094


 

 

 

 

 

Code Workflow for Section 2.2 

Input: training samples' features, training samples' class 

Output: predicted class label 

Software and package: Python, R package imblearn (open source) 

Code: available on https://doi.org/10.5281/zenodo.5503895 

 

Inline configuration : 

python imb_exp.py  --GPU<gpu_id> 

 

Configuration in the script : 

     Data set directory : <path>                           Random seed: <set.seed>                  

     Data set training split: stratified folds          Oversampling methods: <function> 

     Classifiers: Decision Tree or SVM              After-sampled IR (imbalance ratio): x in (0.8, 1] 

     Output directory: <path>                  

 

Script workflow 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

Box to represent directory/folders 

Box with this line is the main script 

Box with this line is the secondary script that the main script is calling 

Box with this line is a note for the datasets 

Function in the main script which is calling the secondary script 

Values that the secondary script return to the main script 

Notice for the directory/folders 

  

Main Script 

  Assign configurations 

  Load data set 

  Normalized data 

  Assign classifiers 

  Training loop 

  Clear GPU and exit 

Data oversampling script 

Access data set directory 

Training/test data split with  

stratified folds 

Calculate the two proposed 

attributes (samples type & LOF) 

Assign oversampling method  

and after-sampled IR 

 

Data set directory 

imb_bench_1 

             …… 

             Imb_bench_6 

              

Output directory 

AUC performance matrix (.csv) 

F1 performance matrix (.csv) 

Gmean performance matrix (.csv) 

Precision performance matrix (.csv)  

Recall performance matrix (.csv) 

Data Pre-processing: 

3. The detailed information for the benchmark 

datasets can be found in paper [1], and the 

datasets can be downloaded from KEEL datasets 

repository [8]. 

4. Before the experiments, we changed the 

benchmark datasets format from .dat to .csv. 

Meanwhile, we changed the class label from 

{positive, negative} to {1, 0}.  

 

 

https://doi.org/10.5281/zenodo.5503895


 

 

 

 

 

2. User Manual for Section 3 

 

Our software is available at https://doi.org/10.5281/zenodo.5163207. This manual shows how to 

use several aspects of our software. It either references to subsection "Configuration and example" 

where possible or explains certain configurations.  

Our software is partly end-to-end software. The whole structure of this software module is 

provided in Figure 8. This software includes three folders: Code, HPOResults, and Data; whereas 

the main part of our software is zipped in one script under the Code folder, namely 

'CASHOptmize.py'.  The resampling and classification algorithms and their hyperparameters 

(as mentioned in Section 3.1) have been defined in the code. However, the predefined search space 

uses the standard syntax defined by Hyperopt, which can be easily modified. For further 

information about how to change our predefined configuration, please check the hyperopt's 

documentation. 

 

 
Figure 8. The hierarchical structure of the code repositories for the software module. 

https://doi.org/10.5281/zenodo.5163207
https://hyperopt.github.io/hyperopt/
https://hyperopt.github.io/hyperopt/


 

 

 

 

 

 

Installation 

 

This software is written in python3 and can be downloaded via: 
 

https://doi.org/10.5281/zenodo.5163207  

 

This software requires several packages in the following as build dependencies, which all are 

available on the PyPi's repositories: 

- scikit-learn (>= 0.23.2): to implement the classification algorithms 

o pip3 install scikit-learn 

- imbalanced-learn (>=0.7.0): to implement the resampling algorithms 

o pip3 install imbalanced-learn 

- Hyperopt (>= 0.2.5): to perform bayesian optimization. 

o Pip3 install hyperopt 
 

Note that, if installing under anaconda, please use pip rather than pip3. 

 

Configuration and example 

 

The following example shows how to fit an arbitrary imbalanced dataset with our software. Our 

software is end-to-end software. In this work, we provide two independent scripts with similar 

value inputs: 
1. GridSearch.py : a python script that will try all combinations of resampling techniques and 

classification algorithms with the default value of hyperparameters.  

• RandomState: is an integer value that uses for reproducibility results, e.g., 

RandomState =1 

• File: path to a dataset in the local machine, e.g., 

File='../Data/imbalanced.zip'. 

• Dataset: Name of the dataset and its extension,.e.g. Dataset='glass1.dat'. 

Run the provided script with the terminal or command line as python's standard 

procedure: 
Python GridSearch.py 

 
2. CASHOptimize.py: Our main software is zipped in this python script file. This supports two 

search strategies are "TPE" and "Randomsearch". 

• RandomState: is an integer value that uses for reproducibility results, e.g., 

RandomState =1 

• File: path to a dataset in the local machine, e.g., 

File='../Data/imbalanced.zip'. 

• Dataset: Name of the dataset and its extension,.e.g., Dataset='glass1.dat'. 

• HPOAlg: uses to identify the search strategy, e.g., HPOAlg='TPE'. 

https://doi.org/10.5281/zenodo.5163207


 

 

 

 

 

Run the provided script with the terminal or command line as python's standard 

procedure: 
Python CASHOptmize.py 

Once the software is finished, the best result (i.e., the best found configuration and its accuracy) 

will be printed on the screen and recorded in the file 'HPOResults/results.csv'. In 

addition, the detailed log file caught during the optimize progress is stored under folder 
'HPOResults/Logs'. 

  



 

 

 

 

 

3. User Manual for Section 4 

 

The key-features of the software modules are reported in Table 10. All three software modules are 

developed in Python 3.5, and are compatible with the latest versions. The software module for 

[38] is only compatible with PyTorch+cpu. For extending this software module to the GPU, the 

code has to be manually tuned. 

 
Table 10. Key details of all three software modules discussed in the report. 

 

Title 

Investigation of 

Modelling Techniques 

for Robust Optimization 

Investigation of 

Dimensionality Reduction 

Techniques for Efficient SAO 

Extending the MGFI for 

Robust Bayesian 

Optimization (RBO) 

 

 

Functionality 

 

This software module 

investigates the 

suitability of the 

modeling techniques for 

RO. 

This software module 

evaluates and compares the 

dimensionality reduction 

techniques for efficiently 

constructing the low 

dimensional models. 

 

This software module is 

used to evaluate and 

compare the robust 

MGFI with the baseline. 

 

Papers 

Related to the 

Software 

An Empirical 

Comparison of Meta-

Modeling Techniques 

for Robust Design 

Optimization. 

Exploring Dimensionality 

Reduction Techniques for 

Efficient Surrogate-Assisted 

Optimization 

A New Acquisition 

Function for Robust 

Bayesian Optimization 

of Unconstrained 

Problems 

Programming 

Language 

 

Python ≥ 3.5 

 

Python ≥ 3.5 

 

Python ≥ 3.5 

Hardware 

Requirements 

 

No Special Hardware 

Requirements. 

The code is tested for 

PyTorch+cpu only. For the 

GPU version, the code has to 

be manually tuned. 

 

No Special Hardware 

Requirements. 

 

 

Data Sets 

 

The software generates 

the data set it uses to 

compare the meta-

models. 

The software generates the 

data set it uses to compare the 

dimensionality reduction 

techniques for efficiently 

constructing the low-

dimensional meta-models. 

 

The software generates 

the data set it uses to 

compare the acquisition 

functions. 

 

The structure of the code repositories for [37] is provided in Figure 9. The repositories do not 

include the input and output data files, which must be generated by running the code. At the bottom 
end of the hierarchical structure in this module, there are two Python files, namely 

"Generate_Data_Sets.ipynb" and "Final_Comparison.ipynb". These two files are 

responsible for generating the data set (subject to the noise level and the test problems selected 

earlier in the hierarchical structure), and performing the comparison of the modelling techniques 



 

 

 

 

 

for RO. The code4 part focusing on the hyperparameter optimization is based on the modelling 

technique chosen. For the creation of graphs and visualizations, a separate repository titled 

"Results Compilation" can be used. Similar hierarchical structure of the code5 for [38]  is provided 

in Figure 10. The repositories here also do not include the input and output data files, similar to 

[37]. The data for the study can be generated using the Python file 
"Generate_Data_Sets.ipynb" by selecting one of the settings of the dimensionality. The 

Python file "bbobbenchmarks.py" implements the test problems, and is utilized by file 

"Generate_Data_Sets.ipynb". For HPO, and the comparison of the DRTs based on 

modelling accuracy and the quality of the optimal solution, four Python files in the second 

hierarchy are utilized. Lastly, the code structure for the implementation of [39] is provided in 

Figure 11. The code6 in this case, similar to the previous ones, is based on a hierarchical structure 

characterizing the most important factors such as the test problem, the noise level, the initial 
temperature setting and the AF. The Python file "RBO.ipynb", implements the code for the 

baseline comparison.  
 

 
Figure 9. Hierarchical structure of the code repositories in [37]. Three noise levels – small, medium, and high – as 

well as six test problems and six modelling techniques characterize the organization of these repositories. 

 
4 The code to reproduce the results in [37] is available at https://doi.org/10.5281/zenodo.3854910.  
5 The code to reproduce the results in [38] is available at https://doi.org/10.5281/zenodo.5500281.   
6 The code to reproduce the results in [39] is available at https://doi.org/10.5281/zenodo.5500295.   

https://doi.org/10.5281/zenodo.3854910
https://doi.org/10.5281/zenodo.5500281
https://doi.org/10.5281/zenodo.5500295


 

 

 

 

 

 
Figure 10. Hierarchical structure of the code repositories in [38]. The code files, i.e., *.py or *. ipynb, are specific 

to the hierarchical structure chosen, e.g., choice of DRT, modeling technique, dimensionality, and the latent size. 



 

 

 

 

 

 
Figure 11. Hierarchical structure of the code repositories in [39]. The code files are specific to the hierarchical 

structure chosen, e.g., test problem, noise level. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

4. User Manual for Section 5 

 

The software modules of the two works in section 5 can be realized via Tr-DMOEA modules in 

MATLAB 2018b. 

 

The structure of the code repositories for the work mentioned in section 5.1 [61] is provided in 

Figure 12. The repositories do not include the input data files. The code is available on 

https://doi.org/10.5281/zenodo.5509255. The used test benchmark functions are defined in the 

"getFunc.m" file under the folder of "benchmark functions". "IGD.m" is the defined IGD metric 

to evaluate the performance of found solutions by Tr-DMOEAs on those benchmark functions. 

Data points that are evenly sampled from the true Pareto front of those benchmark functions are 

stored in the fold "TruePOF". When running the codes, add the folder "ImTR-DMOEA" to the 

MATLAB path, then run the "Main.m" in any Tr- DMOEA (Tr-NSGA-II, Tr-MOPSO and Tr-

RMMEDA) folder for test. In each folder of Tr- DMOEA, there are three types of codes, which 

are the "main.m", transfer learning-based codes, like "getKernel.m", "getW.m" and "getNewY.m" 

and NSGA-II/MOPSO/RMMEDA related codes. All parameter settings of the algorithm can be 

done in the "Main.m" file. The output data files are generated by running the code in the file named 

"Results" under the folder of each Tr-DMOEA, i.e., Tr-NSGA-II, Tr-MOPSO and Tr-RMMEDA. 

In order to verify the answer of when and how to transfer in DMO, a folder named "POF-AfTr" 

under the folder "Results" of Tr-RMMEDA is created to store the transferred solutions after 

changes, as only the running of Tr-RMMEDA is used to answer the questions. The "IGD" folder 

under "Results" of three Tr-DMOEAs store the IGD values of optimized solutions by RM-MEDA, 

MOPSO and NSGA-II under 20 changes. 

 

The structure of the code repositories for the work mentioned in section 5.2 [62] is provided in 

Figure 13. The repositories do not include the input data files. The code is available on 

https://doi.org/10.5281/zenodo.4289094. The used test benchmark functions are defined in the 

"getFunc.m" file under the folder of "benchmark functions". "IGD.m" is the defined IGD metric 

to evaluate the performance of found solutions by Tr-DMOEAs on those benchmark functions. 

Data points that are evenly sampled from the true Pareto front of those benchmark functions are 

stored in the fold "TruePOF". When running the codes, add the folder Root to the MATLAB path, 

then run the "Main.m" in any Tr- RMMEDAs (active-Tr-RMMEDA, interior-Tr-RMMEDA, 

SQP-Tr-RMMEDA and Time-Tr-RMMEDA) folder for test. In each folder of Tr-RMMEDA, 

there are three types of codes, which are the "main.m", transfer learning-based codes, like 

"getKernel.m", "getW.m" and "getNewY.m" and RMMEDA related codes. All parameter settings 

of the algorithm can be done in the "Main.m" file. The difference of those four Tr-RMMEDAs is 

in the "Main.m" file. active-Tr-RMMEDA, interior-Tr-RMMEDA, SQP-Tr-RMMEDA have the 

different inner optimisation methods in the "Main.m". As for Time-Tr-RMMEDA, the time cost 

of TCA is recorded to run RMMEDA on randomly generated solutions after each change. The 

output data files are generated by running the code in the file named "Results" under the folder of 

each Tr-RMMEDA. A folder named "POF-AfTr" under the folder "Results" of Tr-RMMEDAs is 

created to store the transferred solutions after changes. In addition, a folder "runtime" under the 

"Results" is used to record the runtime of Tr-RMMEDAs with different inner optimisation 

methods. 

 

https://doi.org/10.5281/zenodo.5509255
https://doi.org/10.5281/zenodo.4289094


 

 

 

 

 

 
Figure 12. Hierarchical structure of the code repositories in [61]. 



 

 

 

 

 

 
Figure 13. Hierarchical structure of the code repositories in [62]. 
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