

Project Number: 766186

Project Acronym: ECOLE

Project title: Experienced-based Computation: Learning to Optimise

Deliverable D2.4

Integrated Software Environment and Manual for Imbalanced Learning,

Automated Machine Learning, Model-Assisted Robust Optimization, and

Dynamic Multi-Objective Optimization

Authors:

Sibghat Ullah, Duc Anh Nguyen, Jiawen Kong, Hao Wang, Anna Kononova,

 Wojtek Kowalczyk, and Thomas Bäck – Universiteit Leiden

Gan Ruan and Xin Yao – University of Birmingham

Project Coordinator: Professor Xin Yao, University of Birmingham

Beneficiaries: Universiteit Leiden, Honda Research Institute Europe, NEC Laboratories

Europe

H2020 MSCA-ITN

Date of the report: 31.09.2021

Ref. Ares(2021)5948286 - 30/09/2021

Contents

Executive summary ... 3

Major Achievements ... 3

1. Introduction ... 6

2. Learning from Imbalanced Data ... 8

2.1. On the Performance of Oversampling Techniques for Class Imbalance Problems 8

2.2. Improving Imbalanced Classification by Introducing Additional Attributes 9

3. Automated Machine Learning .. 13

3.1. Automatically Optimize the Class Imbalance Problems ... 13

4. Model-Assisted Robust Optimization ... 18

4.1. Investigation of Modelling Techniques for Robust Optimization 18

4.1. Investigation of Dimensionality Reduction Techniques for Efficient SAO 19

4.2. Extending the Moment-Generating Function of Improvement (MGFI) for Robust

Bayesian Optimization (RBO) ... 21

5. Knowledge Transfer in Dynamic Multi-Objective Optimization ... 25

5.1. When and How to Transfer Knowledge in Dynamic Multi-objective Optimization? 25

5.2. Improving the Efficiency of Knowledge Transfer in Dynamic Multi-objective

Optimization ... 27

6. Summary and Outlook .. 28

Appendix ... 29

1. User Manual for Section 2 ... 29

2. User Manual for Section 3 ... 31

3. User Manual for Section 4 ... 34

4. User Manual for Section 5 ... 38

Bibliography ... 41

Executive summary

The objective of WP2.4 is to ready our scientific and software developments for handling

imbalanced data sets, automated machine learning, model-assisted robust optimization, and

dynamic multi-objective optimization. Eight peer-reviewed papers (please see the publication list

in Section 1) have been published for these four research topics. In this report, we briefly describe

these publications and focus mainly on the details of software implementations, which will

facilitate future utilization of scientific outputs of this project. Note that the detailed information

on these eight publications have already been provided in the previous deliverable reports, namely

D2.1, D2.2, D2.3, D3.4 and D3.1 respectively. This report focuses on introducing software

components, including code repositories, code workflow, and user manuals.

Major Achievements

Major scientific achievements regarding work package 2.4 are presented below, where we present

them with the motivating research questions/practical issues and short answers thereto:

Research Questions Discussion

Over 90 resampling techniques have been

developed in the imbalanced learning

domain. Do oversampling techniques that

take global information of minority samples

(new ones) perform better than those which

heavily reply on local information of the

minority class samples (classical ones)?

From our experimental results, we can

conclude that, in most cases, oversampling

approaches which consider the minority

class distribution (RApidy COnverging

Gibbs (RACOG) [1], Wrapper-based

RApidy COnverging Gibbs (wRACOG)

and Random Walk Oversampling (RWO-

Sampling) [2]) perform better and RACOG

gave the best performances among the sixed

reviewed oversampling techniques.

Does introducing additional attributes bring

improvement to the imbalanced

classification performance?

According to our experimental results,

introducing additional attributes can

improve the imbalanced classification

performance in most cases (6 out of 7

datasets). Furthermore, the proposed idea of

introducing additional attributes is simple to

implement and can be combined with

resampling techniques and other

algorithmic-level approaches in the

imbalanced learning domain.

Existing resampling techniques and

classification algorithms have been proved

powerful to handle imbalanced datasets.

However, how to efficiently choose the

best-suited combination of a resampling

We proposed an automated Combined

Algorithm Selection and Hyperparameter

(CASH) optimization approach for

imbalanced classification problems, which

automatically chooses the best set of

technique and a classification algorithm for

a given problem?

algorithms, i.e., resampling technique and

classification algorithm, together with
optimized hyperparameter settings for an

arbitrary imbalanced dataset. The numeric

results show significantly improved
performance with respect to the state-of-the-

art techniques in the imbalanced

classification domain over 44 examined
datasets.

What is the effectiveness of resampling

techniques for automatically handling

imbalanced classification?

Our findings indicate that 98% of runs yield

the best performance with the help of

resampling techniques. Thus, we

recommend to uses resampling techniques

to deal with class imbalance problems.

What is the most efficient optimization

approach to deal with the model selection

and hyperparameter optimization problems

for handling class imbalance problems?

Our results demonstrate that Bayesian

optimization is the best approach for the

combined model selection and

hyperparameter optimization for this aim.

The co-called "Moment-generating function

of the improvement" (MGFI) has been

proposed as an acquisition function (AF) for

the Bayesian Optimization (BO) algorithm.

However, how can it be extended to the

robust scenario?

The MGFI can be extended to the robust

scenario by: Substituting the minimum

observed value of the function (used in

nominal BO algorithm) with the robust

optimal value predicted by the Kriging

model, and by defining the improvement

over the robust optimal value predicted by

the Kriging model.

How does the performance of the robust

MGFI compare to that of the baseline?

The performance of the extended MGFI is

competitive to that of the baseline – the

robust expected improvement criterion – as

it performs superior in 6/12 test cases (see

Figure 7).

What is the impact of the initial temperature

setting on the performance of the robust

MGFI?

Our findings indicate that the initial

temperature setting is problem-dependent

and should be configured with

hyperparameters optimization in practical

scenarios (see Table 8)

When and how to transfer knowledge in

dynamic multi-objective optimization

(DMOO)?

By comparing the quality of transferred

solutions and those without transfer on a set

of benchmark problems with various

environmental changes, it is found that the

transfer fails on problems with fixed Pareto

optimal solution sets, and under small

environmental changes. Therefore, it is

recommended to avoid transfer under these

conditions. A mathematical proof

demonstrates that the Gaussian kernel

function in the existing algorithm is not

ideal. Therefore, a linear kernel is proposed

to replace the Gaussian one.

How to improve the efficiency of transfer

learning in DMOO and whether the

improved

efficiency will affect the quality of

transferred solutions?

Transfer learning is found to be very time-

consuming as the 'inner' optimization

method in transfer learning is very costly.

Two alternative optimization methods can

replace the existing 'inner' optimization

method to improve the efficiency of the

transfer learning. Experimental results show

that the greatly enhanced efficiency does not

result in huge degeneration on the

performance of transfer learning.

1. Introduction

ECOLE aims at shortening the product-development cycle, reducing the resource consumption

during the complete process, and creating more balanced and innovative products in engineering

and ICT sectors, where the following practical difficulties must be addressed: learning and mining

with imbalanced data sets, automatic algorithm configuration and hyperparameter optimization,

optimization of expensive-to-evaluate black-box problems in the presence of uncertainty and

noise, and dynamic multi-objective optimization.

1) Learning and mining in the presence of imbalanced data sets pose additional challenges.

Traditional classification techniques, e.g., logistic regression, intrinsically pay more

attention to the majority class. In contrast, in practical applications of imbalanced learning,

the minority class is of much more importance, e.g., rare-disease identification in electronic

healthcare data sets and fraud detection in financial applications. In ECOLE, one of the

principal aims is to improve the classification accuracy of the minority class without losing

so much the accuracy of the majority class for practical scenarios.

2) The practical applications of machine learning and continuous optimization in the

engineering and ICT sectors emphasize efficiency. Hence, it is necessary to automatically

learn the best configurations of machine learning and optimization algorithms with

considerably less human effort. Therefore, this topic in ECOLE encompasses proposing,

evaluating, and comparing techniques to automatically configure the best algorithms and

hyperparameters for machine learning applications.

3) When solving real-world optimization problems, a frequently-encountered obstacle is the

presence of uncertainties and noise within the system, or model of the system, for which

optima are sought. Uncertainties or noise can affect the objective landscape significantly

[3]. Therefore, the nominal optimum found by the common optimization algorithms may

not be optimal for practical applications where unexpected drift and changes can occur.

Uncertainties or noise can also affect the accuracy and convergence speed of optimization

algorithms [3] [4], thereby directly affecting the quality of the optimal solution. In ECOLE,

one of the major aims is to propose, evaluate, and compare techniques for efficiently

solving the noisy black-box problems with the help of surrogate models.

4) Dynamic multi-objective optimization problems are a special class of multi-objective

problems where the objectives change over time, making them extremely difficult to

optimize directly [5]. In practical scenarios of continuous optimization, the optimization

problems are related with each other. Therefore, employing the notion of similarity, one

can, in principle, extract knowledge gained from solving one problem to help solving

another related problem. In ECOLE, one of the major aims is to propose, analyze and

evaluate methods to transfer knowledge to efficiently solve dynamic multi-objective

optimization problems.

This report summarizes the implementations of solutions to the issues mentioned above and

software development. The following publications are contributing to this report:

• S. Ullah, H. Wang, S. Menzel, B. Sendhoff, and T. Bäck, "An Empirical Comparison

of Meta-Modeling Techniques for Robust Design Optimization", in IEEE Symposium

Series on Computational Intelligence, Xiamen, 2019.

• S. Ullah, et al., "Exploring Dimensionality Reduction Techniques for Efficient

Surrogate-Assisted Optimization", in IEEE Symposium Series on Computational

Intelligence, Canberra, 2020.

• S. Ullah, H. Wang, S. Menzel, B. Sendhoff, and T. Bäck, "A New Acquisition Function

for Robust Bayesian Optimization of Unconstrained Problems", in Genetic and

Evolutionary Computation Conference Companion, Lille, 2021.

• J. Kong, W.J. Kowalczyk, S. Menzel and T. Bäck, "Improving Imbalanced

Classification by Anomaly Detection", in Sixteenth International Conference on

Parallel Problem Solving from Nature, Leiden, 2020.

• J. Kong, et al., "On the Performance of Oversampling Techniques for Class Imbalance

Problems", in 24th Pacific-Asia Conference on Knowledge Discovery and Data Mining,

Singapore, 2020.

• D. A. Nguyen, et al., "Improved Automated CASH Optimization with Tree Parzen

Estimators for Class Imbalance Problems", in IEEE International Conference on Data

Science and Advanced Analytics, Porto, 2021.

• G. Ruan, L. L. Minku, S. Menzel, B. Sendhoff, and X. Yao, "When and how to transfer

knowledge in dynamic multi-objective optimization", in IEEE Symposium Series on

Computational Intelligence, Xiamen, 2019.

• G. Ruan, L. L. Minku, S. Menzel, B. Sendhoff, and X. Yao, "Computational Study on

Effectiveness of Knowledge Transfer in Dynamic Multi-objective Optimization", in

IEEE Congress on Evolutionary Computation, Glasgow, 2020.

The remainder of this report is organized as following. Section 2 highlights the implementation

and software-development for learning and mining with imbalanced data sets in ECOLE. Section

3 presents the same information for automatic algorithm configuration and hyperparameters

optimization. Section 4 illustrates the research and software-development for efficiently solving

the noisy black-box problems, whereas section 5 emphasizes on the research and software-

development for transfer learning for dynamic multi-objective optimization. Lastly, section 6

provides the overall summary and conclusion of the report, alongside the potential research

challenges and opportunities. The structure of the code repositories for the above-mentioned

publications is provided in the Appendix.

2. Learning from Imbalanced Data

The imbalanced classification problem has caught growing attention from both the academic and

industrial fields. Technically, any dataset with an unequal class distribution is imbalanced.

However, only datasets with a significantly skewed distribution are regarded to be imbalanced in

the imbalanced learning domain [6]. This type of data will result in a reduction in the effectiveness

of classical machine learning classification algorithms, because these algorithms assume that the

distributions of the classes in the dataset are roughly equal [7]. When faced with significantly

imbalanced data, these algorithms will be heavily biased towards the majority class and give

deceptive accuracy.

In real-world classification problems, there are many applications that suffer from the class-

imbalance problem, for instance, fault diagnosis, anomaly detection, medical diagnosis and etc. In

these problems, it is much more important to correctly identify the minority samples. The price of

misclassifying the minority samples would be a huge loss of money in fault diagnosis, an

unqualified product in anomaly detection, and a person's life in medical diagnosis. An application

example may also be illustrated in the field of computational design optimization [8], where

product parameters are modified to generate digital prototypes, and the performances are usually

evaluated through numerical simulations, which often require minutes to hours of computation

time. Here, some parameter variations (minority number of designs) would result in effective and

producible geometric shapes, but the given constraints are violated in the final step of optimization.

In this case, applying proper imbalanced classification algorithms to the design parameters could

save computation time. Hence, it is significant to improve the class-imbalance classification.

This section of the report provides a summary of the research and software developed in ECOLE

to efficiently improve the class-imbalance classification. Section 2.1 focuses on studying the

efficiency of different resampling techniques as well as the relationship between data complexity

measures and different resampling techniques. Section 2.2 explains the studies on improving

imbalanced classification by adding additional attributes. The structure of the software developed

for both studies is shared in the Appendix.

2.1. On the Performance of Oversampling Techniques for Class Imbalance Problems

Although over 90 sampling approaches have been developed in the imbalance learning domain,

most of the empirical study and application work are still based on the "classical" resampling

techniques. In this part of research, several experiments on 19 benchmark datasets are set up to

study the efficiency of six powerful oversampling approaches, including both "classical" and new

ones. Oversampling techniques that heavily reply on local information of the minority class

samples are considered as "classical" resampling techniques (The synthetic minority over-

sampling technique (SMOTE), The adaptive synthetic (ADASYN), the majority weighted

minority oversampling techniques (MWMOTE) [9] [10] [11], while oversampling techniques

which take global information of minority samples are considered as "new" resampling techniques

(RACOG, wRACOG, RWO-sampling) [1] [2]. In addition, seven data complexity measures are

considered for the initial purpose of investigating the relationship between data complexity

measures and the choice of resampling techniques. Detailed information has been reported in

deliverables D1.2 and D3.1. We will focus on introducing the implementation of the experiment.

The experimental setup for the study was implemented with the open-source software R. The

required libraries include "smotefamily", "imbalance", "ECol", "C50", "dplyr", "pROC",

"MLmetrics", "measures" and "e1071". The library "smotefamily" and library "imbalance" are

used to implement the resampling techniques, including SMOTE, ADASYN, MWMOTE,

RACOG, wRACOG, and RWO-sampling. The library "ECol" is used to calculate the data

complexity of the datasets, and the library "C50" is used to perform the classification algorithm

"Decision Tree". The other libraries are used to simplify the coding structure and produce the

performance measurements.

Table 1. List of Implemented Oversampling Techniques in R environment.

Resampling R library Usage

SMOTE smotefamily SMOTE(X, target, K = 5, dup_size = 0)

ADASYN smotefamily ADAS(X, target, K=5)

MWMOTE imbalance mwmote(dataset, numInstances, kNoisy = 5,
kMajority = 3, kMinority, threshold = 5, cmax
= 2, cclustering = 3, classAttr = "Class")

RACOG imbalance racog(dataset, numInstances, burnin = 100, lag
= 20, classAttr = "Class")

wRACOG imbalance wracog(train, validation, wrapper, slideWin =
10, threshold = 0.02, classAttr = "Class")

RWO-

sampling

imbalance rwo(dataset, numInstances, classAttr =
"Class")

2.2. Improving Imbalanced Classification by Introducing Additional Attributes

Although the anomaly detection problem can be considered as an extreme case of class imbalance

problem, very few studies consider improving class imbalance classification with anomaly

detection ideas. Most data-level approaches in the imbalanced learning domain aim to introduce

more information to the original dataset by generating synthetic samples. However, in this part of

the research, we gain additional information in another way by introducing additional attributes.

We propose to introduce the outlier score and four types of samples (safe, borderline, rare, outlier)

as additional attributes in order to gain more information on the data characteristics and improve

the classification performance.

Four resampling techniques are implemented in our experiment, including two oversampling

techniques (SMOTE, ADASYN) and two undersampling techniques − One-Sided Selection

(OSS), Neighbourhood Cleaning Rule (NCL) [12] [13]. The detailed information for these

resampling techniques has been given in deliverables D1.2 and D3.1.

Table 2. List of Implemented Resampling Techniques in Python

Resampling Python

packages

Usage

SMOTE imblearn class imblearn.over_sampling.SMOTE(*,sampling_stra
tegy='auto', random_state=None, k_neighbors=5,
n_jobs=None)

ADASYN imblearn class imblearn.over_sampling.ADASYN(*,sampling_str
ategy='auto', random_state=None, k_neighbors=5,

n_jobs=None)

OSS imblearn class imblearn.under_sampling.OneSidedSelection(*, s

ampling_strategy='auto', random_state=None, n_nei

ghbors=None, n_seeds_S=1, n_jobs=None)

NCL imblearn class imblearn.under_sampling.NeighbourhoodCleaning

Rule(*, sampling_strategy='auto', n_neighbors=3, ki

nd_sel='all', threshold_cleaning=0.5, n_jobs=None

)

The first introduced attributes "four types of samples" was first introduced by Napierala and

Stefanowski [14]. Either majority or minority samples can be divided into different types: safe,

borderline, rare examples, and outliers according to the local characteristics of the samples

(reference). Given the number of neighbors k (odd), the label to a minority example can be assigned

through the ratio of the number of its minority neighbors to the total number of neighbors (�������)
according to Table 3. The label for a majority of all examples can be assigned in a similar way.

Table 3: Rules to assign the four types of minority examples.

Local outlier factor (LOF), which indicates the degree of a sample being an outlier, was first

introduced by Breunig et al. in 2000 [15]. The LOF of an object depends on its relative degree of

isolation from its surrounding neighbors. Several definitions are needed to calculate the LOF and

are summarized in the following Algorithm 1.

According to the definition of LOF, a value of approximately 1 indicates that the local density of

data point �� is similar to its neighbors. A value below 1 indicates that data point �� locates in a

relatively denser area and does not seem to be an anomaly, while a value significantly larger than

1 indicates that data point �� is alienated from other points, which is most likely an outlier.

Algorithm 1: Local outlier factor (LOF) algorithm [15].

Code example to calculate LOF and visualization

import numpy as np

import matplotlib.pyplot as plt
from sklearn.neighbors import LocalOutlierFactor

print(__doc__)

np.random.seed(42)

Generate train data
X_inliers = 0.3 * np.random.randn(100, 2)

X_inliers = np.r_[X_inliers + 2, X_inliers - 2]

Generate some outliers

https://scikit-learn.org/stable/auto_examples/neighbors/plot_lof_outlier_detection.html

X_outliers = np.random.uniform(low=-4, high=4, size=(20, 2))
X = np.r_[X_inliers, X_outliers]

n_outliers = len(X_outliers)

ground_truth = np.ones(len(X), dtype=int)
ground_truth[-n_outliers:] = -1

fit the model for outlier detection (default)

clf = LocalOutlierFactor(n_neighbors=20, contamination=0.1)
use fit_predict to compute the predicted labels of the training samples

(when LOF is used for outlier detection, the estimator has no predict,
decision_function and score_samples methods).

y_pred = clf.fit_predict(X)
n_errors = (y_pred != ground_truth).sum()

X_scores = clf.negative_outlier_factor_

plt.title("Local Outlier Factor (LOF)")
plt.scatter(X[:, 0], X[:, 1], color='k', s=3., label='Data points')
plot circles with radius proportional to the outlier scores

radius = (X_scores.max() - X_scores) / (X_scores.max() - X_scores.min())
plt.scatter(X[:, 0], X[:, 1], s=1000 * radius, edgecolors='r',

 facecolors='none', label='Outlier scores')
plt.axis('tight')

plt.xlim((-5, 5))
plt.ylim((-5, 5))

plt.xlabel("prediction errors: %d" % (n_errors))
legend = plt.legend(loc='upper left')

legend.legendHandles[0]._sizes = [10]
legend.legendHandles[1]._sizes = [20]

plt.show()

Figure 1. Demonstration of the Local Outlier Factor (LOF) method, in which the outlier score of a data point can

be intuitively understood as the inverse of the average distance to its k-nearest neighbors.

3. Automated Machine Learning

In the context of applying machine learning in many real-world applications, researchers have to

make several high-level decisions: choose a machine learning model such as a learning algorithm

(i.e., classification or regression algorithm), different preprocessing techniques (data

preprocessing, feature preprocessing), and select a well-suited configuration to their problem, as

depicted in Figure 2. These tasks are complicated and crucially required human efforts: to choose

the best fit model and well-suited hyperparameter settings for an application problem. Automated

machine learning (AutoML) [16, 17] optimization is an efficient approach to limit human efforts

in applying machine learning to real-world problems, making machine learning easy to use and

accessible to non-experts.

In ECOLE, many practical approaches have been developed in machine learning domains, e.g.,

imbalanced classification, robust optimization, and various real-world applications. In order to

apply the research achievements of ECOLE in solving real-world problems efficiently, we

contemplated an automated configuration approach for above-mentioned tasks, based on the

existing works and achievements of ECOLE. This section is dedicated to the software developed

for this aim.

Figure 2. A typical machine learning workflow

3.1. Automatically Optimize the Class Imbalance Problems

The class imbalance is present in many real-world applications. For example, fault detection is a

typical example of the imbalanced classification problem in the manufacturing industry since most

products are correctly produced, and only a few products are faulty. Therefore, the highly

imbalanced nature between the defect and non-defect modules cannot be neglected in software

defect prediction.

In this work, we provide a summary of the software developed in ECOLE to efficiently solve the

class imbalance problem automatically [18, 19]. Our software comprises three major parts:

1. A search space is defined to represent the feasible search domain. In ECOLE, we use the

combination of resampling technique and classification algorithm to handle the class

imbalance problem. In this setting, the resampling techniques were used to producing

balanced data sets before classifying this dataset by a commonly used classification

algorithm. The search space is described in the following:

• Classification algorithms: Our software includes five classification algorithms, i.e.,

Support Vector Machines (SVM), Random Forest (RF), K-Nearest Neighbours

(KNN), Decision Tree (DT), and Logistic Regression (LR). All are implemented in

the python package scikit-learn, described in Table 5.

• The resampling algorithms used in our software can be arranged into three groups,

namely "over resampling" (7 techniques [20, 21, 22, 23, 9, 10]), "under resampling"

(11 techniques [24, 25, 26, 27, 28, 29, 30, 31, 12, 13]), and "combine resampling"

(2 techniques [32, 33]), which are implemented in the python package imbalanced-

learn1 [34]. The detailed information on the resampling techniques used in our

software and their hyperparameters are presented in Table 4.

2. A target program is used to assess the selected machine learning pipeline generated by the

optimizer on the examined dataset, resulting in a performance evaluation metric (here is

geometric mean). The whole computation process consists of the following two phases:

• Static process: For one dataset, categorical variables of the input are converted to

integers by the widely-used Label encoder2, which is then standardized. Next, a

stratified k-fold cross-validation using k =5 is used.

• Dynamic process: At each iteration, the optimizer generates a hyperparameter

setting in the search space, which includes the selected resampler and classifier,

with the selected resampler being applied to each fold to make it balanced and

applied the classifier to the balanced fold. This process in the gray circle is based

on the geometric mean.

Figure 3. Flowchart of the ECOLE software for class imbalance problems.

3. An optimization algorithm is used to find the best pipeline and optimized hyperparameter settings

in the feasible domain defined in the search space. In ECOLE, we applied a special type of

Bayesian optimization approach, the Tree Parzen Estimators (or Tree-structured Parzen

Estimators), which is implemented in the Python package HyperOpt3.

1 https://github.com/scikit-learn-contrib/imbalanced-learn (version 0.7.0)
2 Label encoder, Standard scaler and Stratified k-fold cross-validation are implemented in the python library scikit-

learn (version 0.23.2)
3 https://github.com/hyperopt/hyperopt

https://github.com/scikit-learn-contrib/imbalanced-learn

Table 4. Hyperparameters of resampling techniques

Algorithm Hyperparameter Range

Over-Resampling

SMOTE

k_neighbors [1, 10]

sampling_strategy default

BorderlineSMOTE

k_neighbors [1, 10]

m_neighbors [1, 10]

sampling_strategy default

kind [borderline1, borderline2]

SMOTENC

sampling_strategy default

k_neighbors [1, 10]

SVMSMOTE

sampling_strategy default

k_neighbors [1, 10]

m_neighbors [1, 10]

out_step [0.0, 1.0]

KMeansSMOTE

sampling_strategy default

k_neighbors [1, 10]

cluster_balance_threshold [1e-2, 1]

ADASYN

sampling_strategy default

n_neighbors [1, 10]

Combine-Resampling

SMOTENN sampling_strategy default

SMOTETomek sampling_strategy default

Under-Resampling

CondensedNearestNeighbour

n_neighbors [1, 50]

sampling_strategy default

n_seeds_S [1, 50]

EditedNearestNeighbours

n_neighbors [1, 20]

sampling_strategy default

return_indices [True, False]

kind_sel [all, mode]

RepeatedEditedNearestNeighbours

sampling_strategy default

kind_sel [all, mode]

n_neighbors [1, 20]

AllKNN

n_neighbors [1, 20]

sampling_strategy default

kind_sel [all, mode]

allow_minority [True, False]

Algorithm Hyperparameter Range

InstanceHardnessThreshold

estimator

None, knn, decision-tree,

adaboost, gradient-boosting,

linear-svm

sampling_strategy default

cv [2, 10]

OneSidedSelection

sampling_strategy default

n_neighbors [1, 20]

n_seeds_S [1, 20]

RandomUnderSampler

sampling_strategy default

replacement [True, False]

TomekLinks sampling_strategy default

NearMiss

sampling_strategy default

version [1,3]

n_neighbors [1, 20]

n_neighbors _ver3 [1, 20]

NeighbourhoodCleaningRule

sampling_strategy default

threshold_cleaning [0.0, 1.0]

n_neighbors [1, 20]

ClusterCentroids

sampling_strategy default

estimator [KMeans, MiniBatchKMeans]

voting [hard, soft]

Table 5. Hyperparameters of Classification algorithms

Algorithm Hyperparameter Range

Support Vector

Machines (SVM)

Max_iter 10000

Cache_size 700 (Megabyte)

probability [True, False]

C [0.55,100]

kernel [linear, rbf, poly, sigmoid]

shrinking [true, false]

gamma [auto, value, scale]

gamma_value [3.1e-05,8]

coef0 [-1.0, 1.0]

degree [2, 5]

tol [1e-05, 1e-01]

Random Forest (RF)

n_estimators [1,150]

criterion [gini, entropy]

max_features [1, sqrt, log2, None]

min_samples_split [2, 20]

min_samples_leaf [1, 20]

Algorithm Hyperparameter Range

bootstrap [True, False]

class_weight [balanced, balanced_subsample, None]

K-Nearest Neighbors

(KNN)

n_neighbors [1, 51]

weights [uniform, distance]

algorithm [auto, ball_tree, kd_tree, brute]

p [0, 20]

• p = 0 → metric = chebyshev

• p = 1 → metric = manhattan

• p = 2 → metric = euclidean

• p > 2 → metric = minkowski

Decision Tree (DT)

criterion [gini, entropy]

max_depth [2, 20]

max_features [1, sqrt, log2, None]

min_samples_split [2, 20]

min_samples_leaf [1, 20]

Logistic Regression

(LR)

C [1, 150]

criterion [0.55,100]

tol [1e-05, 1e-01]

l1_ratio [1e-09, 1]

(penalty, solver) [(l1, liblinear), (l1, saga), (l2, lbfgs),

(l2, newton-cg), (l2, liblinear),

(l2, sag), (l2, saga), (elasticnet, saga),

(none, newton-cg), (none, lbfgs),

(none, sag), (none, saga)]

4. Model-Assisted Robust Optimization

While solving real-world optimization problems, a frequently-encountered obstacle is the presence

of uncertainties and noise within the system, or model of the system, for which optima are sought

[4]. Due to various reasons, various types of uncertainties and noise can emerge in optimization

problems. Hence, for real-world scenarios, optimization methods are needed which can deal with

these uncertainties, and solutions have to be found which are not only optimal in the theoretical

sense, but that are also practical in real life. The practice of optimization that accounts for

uncertainties and noise is often referred to as Robust Optimization (RO) [35] [3] [36].

In real-world engineering applications, e.g., automobile manufacturing, building construction, and

steel production, finding a robust solution – a solution whose performance is not significantly

affected by uncertainties – is crucial due to the potentially serious impact in case of a failure.

Despite the significance, however, achieving robustness in modern engineering applications is

challenging. This can be mainly attributed to the variety of fitness landscapes and high

dimensionality, as well as many shapes and forms of uncertainty, which are often unknown in

advance. In practice, optimization scenarios in these domains are often treated as black-box

problems, which have to be efficiently solved in the face of uncertainties and noise. In ECOLE,

RO problems are solved with the help of empirical (statistical) models, which are called Surrogate

Models. These models replace the actual (expensive) function evaluations by their predictions,

thereby helping to efficiently solve the problem [36].

This section of the report provides a summary of the research and software-development to tackle

the expensive to evaluate black-box problem, subject to uncertainty and noise. The first subsection

focuses on assessing the suitability of the surrogate models to solve RO problems [37]. This is

followed by the details on exploring the dimensionality reduction techniques for efficiently

constructing the low dimensional surrogate models [38]. Finally, latest results are reported on

extending an infill criterion that underpins Bayesian Optimization (BO) to the robust scenario [39].

The structure of the code repositories for all three studies is included in the Appendix. The overall

aim of this section is to provide the fundamental details on the implementation of Surrogate-

Assisted Optimization (SAO) in ECOLE.

4.1. Investigation of Modelling Techniques for Robust Optimization

Surrogate Models were initially employed to find the nominal solution of expensive to evaluate

black-box problems, without taking into account the unexpected drifts and changes in the

optimization setup. However, this is unrealistic for many real-world scenarios. As such, a natural

question arises on the applicability of the SAO to find solutions that are immune to uncertainty

and noise. To answer this question, an empirical study was conducted in ECOLE [5]. The study

took into account the impact of some of the most important factors, such as the dimensionality, the

type and structure of the uncertainty, the noise level, and the problem landscape.

The experimental setup for this study was implemented with the help of open-source Python

frameworks such as "SciPy", "NumPy", "scikit-learn" and "pyDOE". In particular, "scikit-learn"

was utilized to implement the modeling techniques [40] [41] such as Kriging/Gaussian Process

Regression (GPR), Regression Trees (RT), Support Vector Machines (SVMs), Quadratic

Polynomials (QP), K-Nearest Neighbors (KNN), and Radial Basis Functions (RBFs). The other

modules, in particular, "NumPy" was utilized to implement the test problems, such as Ackley,

Sphere, and Rastrigin functions. Finally, "pyDOE" was utilized to implement Design of

Experiment (DoE) methodologies such as Latin Hypercube Sampling (LHS). The experimental

setup for this study is presented in Figure 4 for further clarification.

Figure 4. The experimental setup to investigate the suitability of some of the most important modeling techniques for

Robust Optimization [37].

Table 6 presents the major open-source Python frameworks utilized in this study. Further details

on the study and the experimental setup are provided in ECOLE Deliverable 2.3, titled "Robustness

& Uncertainty Modelling in experience-based optimization", whereas the details on the structure

of the code are provided in the Appendix.

Table 6. List of major open-source software modules utilized in the experimental setup [37].

Open-source Software Module Major Purpose

NumPy (Version 1.16.0) To implement the test problems.

PyDOE (Version 0.3.8) To implement LHS.

Scipy (Version 1.2.1)

To implement the (global) optimization

algorithms, e.g., Sequential Quadratic

Programming.

Scikit-learn (Version 0.20.0) To implement the modeling techniques, e.g.,

Kriging.

4.1. Investigation of Dimensionality Reduction Techniques for Efficient SAO

Constructing surrogate models of high-dimensional optimization problems is challenging due to

the computational complexity involved. The computational complexity can be mainly attributed

to two main factors. Firstly, more training data is required to achieve a comparable level of

modeling accuracy as the dimensionality increases. Secondly, training-time-complexity often

increases rapidly with respect to both, the dimensionality and the number of training data points.

Consequently, constructing the surrogate model becomes costlier. Various methodologies have

been proposed to deal with the issue of high dimensionality in SAO, including divide-and-conquer,

variable screening, and mapping the data space to a lower-dimensional space using dimensionality

reduction techniques (DRTs).

One of the most common DRTs is Principal Component Analysis (PCA) [40] [41]. PCA can be

defined as the orthogonal projection of the data onto a lower-dimensional linear space, spanned by

the principal components, such that the variance of the projected data is maximized. Various

https://numpy.org/
https://pythonhosted.org/pyDOE/
https://www.scipy.org/
https://scikit-learn.org/stable/

generalized extensions of PCA have been established in the literature, such as Kernel PCA,

Probabilistic PCA, and Bayesian PCA [40]. On the other hand, Autoencoders (AEs) [41] have

been introduced as feed-forward neural networks (FFNNs), which are trained to copy their input

to their output, so as to learn the useful low dimensional encoding of the data. Like PCA, AEs

have also been extended over the years by generalized frameworks such as Sparse Autoencoders,

Denoising Autoencoders, Contractive Autoencoders [41] and Variational Autoencoders (VAEs)

[42] [43]. Besides PCA and AEs, other important DRTs include Isomap [40], Locally-Linear

Embedding [44], Laplacian Eigenmaps [45], Curvilinear component analysis [46], and t-

distributed stochastic neighbor embedding [41].

As several DRTs have been employed in the literature, a natural question arises on the suitability

of some of the most important DRTs for efficiently constructing the low dimensional surrogate

models. To this end, an empirical investigation was conducted in ECOLE [38]. In this study, four

of the most important DRTs mentioned above, namely PCA, Kernel PCA, AEs and VAEs

respectively, were evaluated and compared with each other. PCA and AEs were chosen due to

their historical significance, since both have been employed regularly for dimensionality reduction,

lossy data compression, feature learning and data visualization in machine learning [40] [41].

Kernel PCA was incorporated due to the generalized non-linear extension of the classical PCA

algorithm. Similarly, VAEs were considered due to the presence of the non-linear stochastic

encodings of the data space, which can be utilized for constructing the surrogate models efficiently.

This study focused on providing a novel perspective on the applicability of these DRTs in SAO.

This was accomplished by performing an experimental study of the corresponding low

dimensional surrogate models (LDSMs) on a diverse range of test cases.

The experimental setup for this study was based on ten unconstrained, noiseless, single-objective

optimization problems from the continuous benchmark function test-bed known as "Black-Box-

Optimization-Benchmarking" (BBOB) [47]. Each of these test functions was evaluated on three

different values of dimensionality – 50, 100, and 200, respectively. Note that all test functions

mentioned were subject to minimization. Four DRTs were employed − PCA, KPCA, AEs, and

VAEs. For each of these techniques, specifying the size of the latent dimensionality was crucial

since it could affect the quality of the corresponding LDSM. Therefore, for each distinct value of

dimensionality, three different settings of the latent dimensionality were chosen.

 In AEs and VAEs, both the encoder and the decoder had four hidden layers each with hyperbolic

tangent non-linearity. For PCA and KPCA, a linear transformation of the original features was

computed before performing the dimensionality reduction. Two (surrogate) modeling techniques

were chosen − Kriging and Polynomial Regression (degree=2 with elastic-net penalty). Notably,

both sets of techniques − the DRTs and the modeling techniques, had some hyperparameters.

Therefore, it was crucial to tune these hyperparameters to get the best quality surrogate models.

The flowchart of the experimental setup for this study [38] is presented in Figure 5.

Figure 5. Flowchart of the experimental setup. Each step of the process is shown in grey rectangles. The central

rectangles indicate the hyperparameter optimization loop based on the modeling accuracy of the surrogates.

The experimental setup for this study was also carried out with the help of open-source Python

frameworks such as "SciPy", "NumPy", "scikit-learn" and "pyDOE". In addition to that, the

famous Python framework "PyTorch" was employed for the realization of AEs and VAEs. In the

setup, "scikit-learn" was utilized to implement the modeling techniques – Kriging and QP with

elastic-net penalty – as well as two DRTs, namely the PCA and Kernel PCA. To implement the

test problems, the code provided by BBOB [47] was utilized. Lastly, to implement the

hyperparameter optimization (HPO), another open-source Python framework "Hyperopt" was

used. Table 7 reports the major open-source Python frameworks utilized in this study, whereas

further details on the study and the experimental setup are provided in ECOLE Deliverable 2.1,

titled "Experience-based high dimensional and big data assisted optimization". Furthermore, the

details on the structure of the code are provided in the Appendix.

Table 7. List of major open-source software modules utilized in the experimental setup in [38].

Open-source Software Module Major Purpose

PyTorch (Version 1.5.0) To implement AEs and VAEs.

PyDOE (Version 0.3.8) To implement LHS.

Scipy (Version 1.5.0) To implement the global optimization

algorithms, e.g., L-BFGS.

Scikit-learn (Version 0.23.0)

To implement the modelling techniques, e.g.,

Kriging, as well as PCA and Kernel PCA.

BBOB To implement the test problems.

Hyperopt (Version 0.2.4) To perform HPO.

4.2. Extending the Moment-Generating Function of Improvement (MGFI) for Robust

Bayesian Optimization (RBO)

The famous Bayesian Optimization (BO) algorithm [16] has been adapted to efficiently solve RO

problems, and is referred to as Robust Bayesian Optimization (RBO) in this report. The

performance of the RBO algorithm is greatly determined by the acquisition function (AF), which

balances the trade-off of exploration and exploitation. Furthermore, following the intuition of

utilizing the higher moment of the improvement in ECOLE, the Moment-Generating Function of

the Improvement (MGFI) [17] was extended to efficiently solve problems with uncertainty [7].

The flowchart of the RBO algorithm is presented in Figure 6.

https://pytorch.org/
https://pythonhosted.org/pyDOE/
https://www.scipy.org/
https://scikit-learn.org/stable/
https://coco.gforge.inria.fr/
https://github.com/hyperopt/hyperopt

Figure 6. The flowchart of the RBO algorithm. Steps 6 and 7 are adapted to extend the BO algorithm to the robust

scenario.

To gauge the ability of the extended MGFI, we evaluated and compared it against the baseline –

the robust expected improvement criterion (REIC) proposed in [48]. The comparison [39] involved

four test problems in total, all taken from the existing literature. Three of these problems, the so-

called "Three", the "Eight" and the "Ten-Dimensional" problems were taken from [48], in addition

to a two-dimensional "Branin" function. The comparison also involved three noise levels based on

5, 10 and 20 % deviation in the nominal values of the decision variables, giving rise to a total of

12 test scenarios for comparison. In addition to the baseline comparison, the configuration of the

initial temperature was altered to comprehend the role it played in the performance of the extended

AF. To this end, only the "Branin" and the "Three-Dimensional" problems were chosen alongside

three different configurations for the initial temperature.

Graphs pertaining to the baseline comparison are presented in Figure 7. Note that each column of

plots in this figure corresponds to a specific noise level, whereas the rows distinguish between

different problem instances. The noise level determines the maximum deviation from the nominal

values of the decision variables. Each subplot in this figure presents two curves based on the two

AFs. Each of these curves indicates the mean absolute difference (MAD) to the globally robust

optimal function value (GROFV) based on 25 independent runs. From Figure 7, we observe that

in 6/12 cases, the extended MGFI (denoted as RMGFI in the figure) yielded a better optimal

function value, whereas the implementation with the REIC performed superior in 5/12 cases. In

particular, the REIC exceeded the RMGFI for all three test scenarios related to the "Branin"

function, whereas the RMGFI performed better on the "Three-Dimensional" problem.

Additionally, it can be observed that both acquisition functions performed competitively on the

third noise level. Note that in the test scenarios of the "Eight" and the "Ten-Dimensional" problems

concerning the first noise level, the RMGFI undershooted the GROFV.

Figure 7. Mean Absolute Difference to the globally robust optimal function value based on the extended RMGFI and

the baseline REIC.

Next, the results based on the variation of the initial temperature are presented in Table 8. In this

table, the first column reads the optimization problem at hand, whereas the next three columns

describe the noise level, initial temperature, and the MAD to the GROFV accompanied with the

standard error (SE). An important observation from Table 8 suggests that for the "Branin" function,

the best performance was achieved for the low initial temperature. On the other hand, the higher

settings for the initial temperature gave rise to a better performance on the "Three-Dimensional"

problem.

Table 8. Mean Absolute Difference (MAD) to the globally robust optimal function value based on three different

settings of the initial temperature.

Problem Noise Level Initial Temperature MAD

Branin

5 %

1 8.08 ± 1.44

3 8.87 ± 1.59

5 8.31 ± 1.48

10 %

1 7.78 ± 2.23

3 8.46 ± 2.22

5 7.81 ± 2.18

20 %

1 5.88 ± 0.85

3 6.20 ± 1.01

5 6.09 ± 1.01

5 %

1 6.58 ± 1.09

3 5.66 ± 0.90

5 5.83 ± 0.95

 1 5.61 ± 0.79

Three-Dimensional 10 % 3 5.27 ± 0.55

5 5.75 ± 0.75

20 %

1 21.01 ± 2.02

3 20.15 ± 1.81

5 19.63 ± 1.91

The experimental setup for the study was carried out with the help of open-source Python

frameworks such as "SciPy", "NumPy", "SMT", "scikit-learn" and "pyDOE2". In particular,

"scikit-learn" was utilized to realize the Kriging model. "NumPy" and "SMT" were utilized to

implement the test problems. "SciPy" was utilized to implement the global optimization algorithm,

i.e., L-BFGS. Finally, "pyDOE2" was utilized to implement the LHS for DoE. Table 9 reports the

major open-source Python frameworks utilized in this study, whereas the details on the structure

of the software are provided in the Appendix.

Table 9. List of major open-source software modules utilized in the experimental setup in [39].

Open-source Software Module Major Purpose

NumPy (Version 1.20.0) To implement the utility functions and test

problems.

pyDOE2 (Version 1.3.0) To implement LHS.

Scipy (Version 1.6.1) To implement the global optimization

algorithms, e.g., L-BFGS.

Scikit-learn (Version 0.24.0) To implement Kriging.

SMT (Version 1.0.0) To implement the test problems.

https://numpy.org/
https://pypi.org/project/pyDOE2/
https://www.scipy.org/
https://scikit-learn.org/stable/
https://smt.readthedocs.io/en/latest/index.html

5. Knowledge Transfer in Dynamic Multi-Objective Optimization

Transfer learning [49] is a machine learning method that is able to transfer the knowledge from a

source task to a target task. This inherent characteristic of transfer learning makes it intuitive to

apply to explore useful experiences that have been obtained in one task (optimization problem) to

help solve another related task. Consequently, computational efficiency can be gained while

tackling expensive-to-evaluate DMOO problems. The key challenge in DMOO is to constantly

trace a changing Pareto optimal front (POF) and/or Pareto optimal set (POS) before the next

environmental change occurs [50]. Aiming at this goal, researchers have proposed a method which

predicts [50] [51] the good solutions in the next environment after learning the regularity of the

environmental changes. In most prediction-based approaches, it is implicitly assumed that the

evolution of the solutions used to train and test the prediction model obeys a fixed independent

and identical probability distribution. However, this is not always true under dynamic

environments in optimization, since the environmental changes may result in different evolution

patterns over time. Consequently, the prediction model based on the incorrect assumption may

cause inaccurate predictions of optimal solutions. Transfer learning, which does not make this

assumption, is a good candidate for solving DMOO problems if it can learn and exploit the

relationship among different problems.

So far, there has only been one attempt to introduce transfer learning to solve DMOO problems

with evolutionary algorithms (EAs), resulting in a technique referred to as "Transfer learning based

dynamic multi-objective optimization algorithms" (Tr-DMOEAs) [52]. Even though experimental

studies [52] have shown the superiority of Tr-DMOEAs over the state-of-the-art in addressing

DMOO problems, the results also showed that Tr-DMOEA does not always work well and is time-

consuming. It is therefore important to understand why and when transfer learning does not work

well. Only after understanding that, we can make some improvements regarding transfer learning

in DMOO. In addition, it is also important to understand what is the most time-consuming part in

Tr-DMOEA, after which we are able to take specific actions to increase the computational

efficiency of Tr-DMOEA.

This section of the report provides a summary of the research and software-development in

ECOLE to improve the effectiveness and the efficiency of knowledge transfer in DMOO. Section

5.1 aims to answer the research question: when and how to transfer knowledge in DMOO, such

that the Tr-DMOEAs algorithm is able to find solutions with better quality than the baseline

methods. Section 5.2 illustrates a computational study on the cost and performance of knowledge

transfer in DMOO, so as to verify whether two alternatives of the existing optimization method

for the 'inner' problem in transfer learning are able to improve the efficiency of Tr-DMOEA.

5.1. When and How to Transfer Knowledge in Dynamic Multi-objective Optimization?

Considering the general process of transfer learning, there are three main components as following:

• What to transfer?

• When to transfer?

• How to transfer?

In terms of the first question, good solutions found for the previous environment are typically

aimed to be transferred to the next environment in DMOO. However, there are no straightforward

answers to the other two questions. Generally, whenever a new environmental change happens,

there is a population that has already been optimized to the previous environment. To check

whether transfer learning works, we compare the quality of the following solutions on the new

environment:

• Transferred solutions

• Solutions copied from the previously optimized population.

For transfer learning to be considered as successful, the new solution should be of at least similar

(and ideally better) quality as opposed to the solution on the new environment.

To gauge the effectiveness of transfer learning, an experimental study is conducted in ECOLE to

compare Tr-RMMEDA and RMMEDA where RMMEDA [53] refers to the so-called "Regularity

model-based multi-objective estimation of distribution algorithm". In DMOO, the key point is to

find the optimal solutions as soon as possible before the next change occurs. In this case, the

performance of the Tr-DMOEA depends on the quality of the generated solutions after each

change. Therefore, if the transferred solutions are better than the copied solutions from the

previous environment, we consider that transfer learning works well. On the contrary, if the

transferred solutions are worse than the copied solutions, transfer learning fails. Experimental

results have shown that the transferred solutions are all worse than those from the previous

environment on problems with fixed POS and on problems with small changes.

The main idea of Tr-DMOEA is to find a mapping function to map randomly generated solutions

in the objective space of two problems at two consecutive environments by minimizing the

distance between those two solution sets in the latent space. However, in the existing works, a

Gaussian kernel function is used in the mapping function, which has been mathematically proved

to be not ideal. Therefore, transfer learning fails in DMOO due to the Gaussian kernel. We propose

an improved version of Tr-DMOEA, which applies an alternative kernel function that does not

have the problem of Gaussian kernel function. Specifically, after each change, transferred solutions

and copied solution from the previous environment are firstly combined together. After that,

nondominated sorting and crowding distance in Non-dominated Sorting Genetic Algorithm-II

(NSGA-II) [54] are used to rank the combined solutions on the new environment. After reviewing

present common kernel functions [55] [56] [57], we find that the linear kernel functions overcome

the problem presented by the Gaussian kernel function.

The experimental setup for this study was implemented based on the original Tr-DMOEA under

the environment of MATALB 2018b. The used benchmark functions are taken from [58]. For the

parameters of these problems, there are 20 changes. In order to study the effectiveness of Tr-

DMOEAs in different dynamics, there are three dynamics with different severity of change (i.e.,

nt =10, 1 and 20). They represent the environmental changes are medium, large and small,

respectively. Within each change, the population is forced to run 50 generations (i.e., τt = 50),
which enables the population to converge. Inverted Generational Distance (IGD) is used to

compare the performance of all solutions sets.

5.2. Improving the Efficiency of Knowledge Transfer in Dynamic Multi-objective

Optimization

Transfer Component Analysis (TCA) is the main transfer learning method used in Tr-DMOEA.

The time complexity of TCA and primal dual interior point has been analyzed in [52]. The major

time cost of TCA is spent on the eigenvalue decomposition. This is the case when nonzero

eigenvectors are to be extracted. In order to empirically verify the cost of TCA and interior point

method, an initial experiment is conducted regarding the computation time of these two parts in a

single run. An experimental design is taken to record the computation time of each component in

Tr-DMOEA. The findings suggest that the interior point method consumes more computation time.

It has been shown that the existing Tr-DMOEA is still extremely time-consuming. It is unclear if

it is worthy to consume such long time to use transfer learning in DMOO. In order to figure out

the answer of this question, another experimental setup is designed. The main idea behind this

setup is to use the computation time of transfer learning to optimize randomly generated solutions.

Whenever there is a change, transfer leaning is used to get the initial population, while another

initial population is randomly generated in the search space. The costs of transfer learning and

random generation are recorded, and termed as ��� and ���� respectively. The cost is the running

time determined based on the stopwatch timer in MATLAB, where the MATLAB command 'tic'

and 'toc' starts and ends the timer respectively. Then, the cost ��� − ���� is used to optimize the

randomly generated population. During the optimization, both the transferred population and

random one will iterate for the same generations to get two optimized solutions. Experimental

results have shown that, given the same cost budget, the quality of random solution is better than

that of transferred solutions no matter whether at the first generation after environmental changes

or at the last generation after optimization.

Given that the computation time for solving the inner optimization problem in Tr-DMOEA is very

large, it is unclear whether the efficiency of solving the inner problem could be enhanced. To

explore this, other two popular optimization methods are used here, which are the active set [59]

and sequential quadratic programming (SQP) [59] methods. We have further conducted a set of

experiments to validate the efficiency and effectiveness of these three Tr-DMOEA variants. The

computation time of three different optimization methods in these three Tr-DMOEA variants is

only recorded when solving the inner problem, for all test problems with all parameter setting. The

findings from this study suggest that for all test problems with picked parameter settings, the

interior point method consumes the most time among the three compared methods to solve the

inner optimization problem, while the active set method is the most efficient optimization

algorithm. This shows that another two inner optimization methods can greatly improve the

efficiency of transfer learning in DMOO. In order to verify whether the improved efficiency of Tr-

DMOEA affects the solution quality, these three Tr-DMOEA variants are compared on picked

benchmark problems. The findings show that Tr-DMOEA with SQP achieves the best optimized

solution quality after optimization.

6. Summary and Outlook

This deliverable report focuses on the implementation details and software-development regarding

the work package 2.4 in ECOLE, namely, “Integrated software environment (Self-Tuning

optimization) and manual”. All in all, this deliverable report concentrates on four main issues as

following:

• How to improve the classification accuracy of the minority class in imbalanced learning

without significantly compromising on the accuracy of the majority class?

• How to automatically perform algorithm configuration and hyperparameters optimization

for efficiently applying the common machine learning and optimization algorithms?

• How to efficiently solve the expensive to evaluate black-box problems in the presence of

uncertainty and noise?

• How to transfer knowledge for efficiently solving DMOO problems?

To answer the first question, the efficacy of some of the most important oversampling techniques

were analyzed in [8]. It was concluded that the oversampling techniques, which considered the

minority class distribution helped improving the classification accuracy. Furthermore, it was found

that the so-called "F1v" value – a measure for evaluating the overlap between the classes – had a

strong negative correlation with the potential area-under-the-curve value in most cases. Lastly, the

proposed approach to admit additional attributes helped improving the classification accuracy in

imbalanced learning in most cases [60].

For the issue of algorithm configuration and hyperparameters optimization, an approach was
proposed in ECOLE [18] to automate the machine learning pipeline (with imbalanced

classification problem as a particular use case). The empirical study to compare the results of the

proposed approach with the baseline methods indicated the promising nature of the technique as it

significantly improved the performance of the classification algorithms over the examined data

sets.

For efficiently solving the noisy black-box problems in ECOLE, an empirical study was designed

to assess the suitability of the modeling techniques to find the robust solution [37]. The findings

of this study indicated the usefulness of Kriging and Response-Surface Models (Polynomials).

Furthermore, another study indicated the usefulness of PCA and AEs for efficiently constructing

the low dimensional surrogate models [38]. The latest research on this topic focused on the BO

algorithm by extending the MGFI to the robust scenario [39]. The potential future research line in

this direction aims at providing a novel perspective on the so-called "Computational Cost of

Robustness" – the need for additional computational resources to find the robust instead of a

nominal solution.

Transferring knowledge to efficiently solve DMOO problems is complex, as our findings

demonstrate. The key problem lies in the Gaussian kernel, and our studies recommend the use of

linear kernels in lieu of the Gaussian kernel. Our results also demonstrate the superiority of

active-set method for solving the inner problem in knowledge transfer. Lastly, an empirical

investigation on the running time suggests the expensive nature of interior method.

Appendix

1. User Manual for Section 2

Code Workflow for Section 2.1

Input: training samples' features, training samples' class

Output: predicted class label

Software and package: R, R package smotefamily, imbalance (open source)

Code: available on https://doi.org/10.5281/zenodo.3855094

Inline configuration :

python imb_exp.r --GPU<gpu_id>

Configuration in the script :

 Data set directory : <path> Random seed: <set.seed>

 Data set training split: stratified folds Oversampling methods: <function>

 Classifiers: C5.0 or SVM After-sampled IR (imbalance ratio): x in (0.8, 1]

 Output directory: <path>

Script workflow

Box to represent directory/folders

Box with this line is the main script

Box with this line is the secondary script that the main script is calling

Box with this line is a note for the datasets

Function in the main script which is calling the secondary script

Values that the secondary script return to the main script

Notice for the directory/folders

Main Script

 Assign configurations

 Load data set

 Normalized data

 Calculate data complexity

 Assign classifiers

 Training loop

 Clear GPU and exit

Data oversampling script

Access data set directory

Training/test data split with

 stratified folds

Assign oversampling method

 and after-sampled IR

Data set directory

imb_bench_1

 ……

 Imb_bench_19

 Vehicle_1

 Vehicle_2

 Vehicle_3

Output directory

AUC performance matrix (.csv)

F1 performance matrix (.csv)

Gmean performance matrix (.csv)

Data complexity value for each

training set (.csv)

Data Pre-processing:

1. The detailed information for the benchmark

datasets can be found in paper [1], and the

datasets can be downloaded from KEEL datasets

repository [8].

2. Before the experiments, we changed the

benchmark datasets format from .dat to .csv.

Meanwhile, we changed the class label from

{positive, negative} to {1, 0}.

https://doi.org/10.5281/zenodo.3855094

Code Workflow for Section 2.2

Input: training samples' features, training samples' class

Output: predicted class label

Software and package: Python, R package imblearn (open source)

Code: available on https://doi.org/10.5281/zenodo.5503895

Inline configuration :

python imb_exp.py --GPU<gpu_id>

Configuration in the script :

 Data set directory : <path> Random seed: <set.seed>

 Data set training split: stratified folds Oversampling methods: <function>

 Classifiers: Decision Tree or SVM After-sampled IR (imbalance ratio): x in (0.8, 1]

 Output directory: <path>

Script workflow

Box to represent directory/folders

Box with this line is the main script

Box with this line is the secondary script that the main script is calling

Box with this line is a note for the datasets

Function in the main script which is calling the secondary script

Values that the secondary script return to the main script

Notice for the directory/folders

Main Script

 Assign configurations

 Load data set

 Normalized data

 Assign classifiers

 Training loop

 Clear GPU and exit

Data oversampling script

Access data set directory

Training/test data split with

stratified folds

Calculate the two proposed

attributes (samples type & LOF)

Assign oversampling method

and after-sampled IR

Data set directory

imb_bench_1

 ……

 Imb_bench_6

Output directory

AUC performance matrix (.csv)

F1 performance matrix (.csv)

Gmean performance matrix (.csv)

Precision performance matrix (.csv)

Recall performance matrix (.csv)

Data Pre-processing:

3. The detailed information for the benchmark

datasets can be found in paper [1], and the

datasets can be downloaded from KEEL datasets

repository [8].

4. Before the experiments, we changed the

benchmark datasets format from .dat to .csv.

Meanwhile, we changed the class label from

{positive, negative} to {1, 0}.

https://doi.org/10.5281/zenodo.5503895

2. User Manual for Section 3

Our software is available at https://doi.org/10.5281/zenodo.5163207. This manual shows how to

use several aspects of our software. It either references to subsection "Configuration and example"

where possible or explains certain configurations.

Our software is partly end-to-end software. The whole structure of this software module is

provided in Figure 8. This software includes three folders: Code, HPOResults, and Data; whereas

the main part of our software is zipped in one script under the Code folder, namely

'CASHOptmize.py'. The resampling and classification algorithms and their hyperparameters

(as mentioned in Section 3.1) have been defined in the code. However, the predefined search space

uses the standard syntax defined by Hyperopt, which can be easily modified. For further

information about how to change our predefined configuration, please check the hyperopt's

documentation.

Figure 8. The hierarchical structure of the code repositories for the software module.

https://doi.org/10.5281/zenodo.5163207
https://hyperopt.github.io/hyperopt/
https://hyperopt.github.io/hyperopt/

Installation

This software is written in python3 and can be downloaded via:

https://doi.org/10.5281/zenodo.5163207

This software requires several packages in the following as build dependencies, which all are

available on the PyPi's repositories:

- scikit-learn (>= 0.23.2): to implement the classification algorithms

o pip3 install scikit-learn

- imbalanced-learn (>=0.7.0): to implement the resampling algorithms

o pip3 install imbalanced-learn

- Hyperopt (>= 0.2.5): to perform bayesian optimization.

o Pip3 install hyperopt

Note that, if installing under anaconda, please use pip rather than pip3.

Configuration and example

The following example shows how to fit an arbitrary imbalanced dataset with our software. Our

software is end-to-end software. In this work, we provide two independent scripts with similar

value inputs:
1. GridSearch.py : a python script that will try all combinations of resampling techniques and

classification algorithms with the default value of hyperparameters.

• RandomState: is an integer value that uses for reproducibility results, e.g.,

RandomState =1

• File: path to a dataset in the local machine, e.g.,

File='../Data/imbalanced.zip'.

• Dataset: Name of the dataset and its extension,.e.g. Dataset='glass1.dat'.

Run the provided script with the terminal or command line as python's standard

procedure:
Python GridSearch.py

2. CASHOptimize.py: Our main software is zipped in this python script file. This supports two

search strategies are "TPE" and "Randomsearch".

• RandomState: is an integer value that uses for reproducibility results, e.g.,

RandomState =1

• File: path to a dataset in the local machine, e.g.,

File='../Data/imbalanced.zip'.

• Dataset: Name of the dataset and its extension,.e.g., Dataset='glass1.dat'.

• HPOAlg: uses to identify the search strategy, e.g., HPOAlg='TPE'.

https://doi.org/10.5281/zenodo.5163207

Run the provided script with the terminal or command line as python's standard

procedure:
Python CASHOptmize.py

Once the software is finished, the best result (i.e., the best found configuration and its accuracy)

will be printed on the screen and recorded in the file 'HPOResults/results.csv'. In

addition, the detailed log file caught during the optimize progress is stored under folder
'HPOResults/Logs'.

3. User Manual for Section 4

The key-features of the software modules are reported in Table 10. All three software modules are

developed in Python 3.5, and are compatible with the latest versions. The software module for

[38] is only compatible with PyTorch+cpu. For extending this software module to the GPU, the

code has to be manually tuned.

Table 10. Key details of all three software modules discussed in the report.

Title

Investigation of

Modelling Techniques

for Robust Optimization

Investigation of

Dimensionality Reduction

Techniques for Efficient SAO

Extending the MGFI for

Robust Bayesian

Optimization (RBO)

Functionality

This software module

investigates the

suitability of the

modeling techniques for

RO.

This software module

evaluates and compares the

dimensionality reduction

techniques for efficiently

constructing the low

dimensional models.

This software module is

used to evaluate and

compare the robust

MGFI with the baseline.

Papers

Related to the

Software

An Empirical

Comparison of Meta-

Modeling Techniques

for Robust Design

Optimization.

Exploring Dimensionality

Reduction Techniques for

Efficient Surrogate-Assisted

Optimization

A New Acquisition

Function for Robust

Bayesian Optimization

of Unconstrained

Problems

Programming

Language

Python ≥ 3.5

Python ≥ 3.5

Python ≥ 3.5

Hardware

Requirements

No Special Hardware

Requirements.

The code is tested for

PyTorch+cpu only. For the

GPU version, the code has to

be manually tuned.

No Special Hardware

Requirements.

Data Sets

The software generates

the data set it uses to

compare the meta-

models.

The software generates the

data set it uses to compare the

dimensionality reduction

techniques for efficiently

constructing the low-

dimensional meta-models.

The software generates

the data set it uses to

compare the acquisition

functions.

The structure of the code repositories for [37] is provided in Figure 9. The repositories do not

include the input and output data files, which must be generated by running the code. At the bottom
end of the hierarchical structure in this module, there are two Python files, namely

"Generate_Data_Sets.ipynb" and "Final_Comparison.ipynb". These two files are

responsible for generating the data set (subject to the noise level and the test problems selected

earlier in the hierarchical structure), and performing the comparison of the modelling techniques

for RO. The code4 part focusing on the hyperparameter optimization is based on the modelling

technique chosen. For the creation of graphs and visualizations, a separate repository titled

"Results Compilation" can be used. Similar hierarchical structure of the code5 for [38] is provided

in Figure 10. The repositories here also do not include the input and output data files, similar to

[37]. The data for the study can be generated using the Python file
"Generate_Data_Sets.ipynb" by selecting one of the settings of the dimensionality. The

Python file "bbobbenchmarks.py" implements the test problems, and is utilized by file

"Generate_Data_Sets.ipynb". For HPO, and the comparison of the DRTs based on

modelling accuracy and the quality of the optimal solution, four Python files in the second

hierarchy are utilized. Lastly, the code structure for the implementation of [39] is provided in

Figure 11. The code6 in this case, similar to the previous ones, is based on a hierarchical structure

characterizing the most important factors such as the test problem, the noise level, the initial
temperature setting and the AF. The Python file "RBO.ipynb", implements the code for the

baseline comparison.

Figure 9. Hierarchical structure of the code repositories in [37]. Three noise levels – small, medium, and high – as

well as six test problems and six modelling techniques characterize the organization of these repositories.

4 The code to reproduce the results in [37] is available at https://doi.org/10.5281/zenodo.3854910.
5 The code to reproduce the results in [38] is available at https://doi.org/10.5281/zenodo.5500281.
6 The code to reproduce the results in [39] is available at https://doi.org/10.5281/zenodo.5500295.

https://doi.org/10.5281/zenodo.3854910
https://doi.org/10.5281/zenodo.5500281
https://doi.org/10.5281/zenodo.5500295

Figure 10. Hierarchical structure of the code repositories in [38]. The code files, i.e., *.py or *. ipynb, are specific

to the hierarchical structure chosen, e.g., choice of DRT, modeling technique, dimensionality, and the latent size.

Figure 11. Hierarchical structure of the code repositories in [39]. The code files are specific to the hierarchical

structure chosen, e.g., test problem, noise level.

4. User Manual for Section 5

The software modules of the two works in section 5 can be realized via Tr-DMOEA modules in

MATLAB 2018b.

The structure of the code repositories for the work mentioned in section 5.1 [61] is provided in

Figure 12. The repositories do not include the input data files. The code is available on

https://doi.org/10.5281/zenodo.5509255. The used test benchmark functions are defined in the

"getFunc.m" file under the folder of "benchmark functions". "IGD.m" is the defined IGD metric

to evaluate the performance of found solutions by Tr-DMOEAs on those benchmark functions.

Data points that are evenly sampled from the true Pareto front of those benchmark functions are

stored in the fold "TruePOF". When running the codes, add the folder "ImTR-DMOEA" to the

MATLAB path, then run the "Main.m" in any Tr- DMOEA (Tr-NSGA-II, Tr-MOPSO and Tr-

RMMEDA) folder for test. In each folder of Tr- DMOEA, there are three types of codes, which

are the "main.m", transfer learning-based codes, like "getKernel.m", "getW.m" and "getNewY.m"

and NSGA-II/MOPSO/RMMEDA related codes. All parameter settings of the algorithm can be

done in the "Main.m" file. The output data files are generated by running the code in the file named

"Results" under the folder of each Tr-DMOEA, i.e., Tr-NSGA-II, Tr-MOPSO and Tr-RMMEDA.

In order to verify the answer of when and how to transfer in DMO, a folder named "POF-AfTr"

under the folder "Results" of Tr-RMMEDA is created to store the transferred solutions after

changes, as only the running of Tr-RMMEDA is used to answer the questions. The "IGD" folder

under "Results" of three Tr-DMOEAs store the IGD values of optimized solutions by RM-MEDA,

MOPSO and NSGA-II under 20 changes.

The structure of the code repositories for the work mentioned in section 5.2 [62] is provided in

Figure 13. The repositories do not include the input data files. The code is available on

https://doi.org/10.5281/zenodo.4289094. The used test benchmark functions are defined in the

"getFunc.m" file under the folder of "benchmark functions". "IGD.m" is the defined IGD metric

to evaluate the performance of found solutions by Tr-DMOEAs on those benchmark functions.

Data points that are evenly sampled from the true Pareto front of those benchmark functions are

stored in the fold "TruePOF". When running the codes, add the folder Root to the MATLAB path,

then run the "Main.m" in any Tr- RMMEDAs (active-Tr-RMMEDA, interior-Tr-RMMEDA,

SQP-Tr-RMMEDA and Time-Tr-RMMEDA) folder for test. In each folder of Tr-RMMEDA,

there are three types of codes, which are the "main.m", transfer learning-based codes, like

"getKernel.m", "getW.m" and "getNewY.m" and RMMEDA related codes. All parameter settings

of the algorithm can be done in the "Main.m" file. The difference of those four Tr-RMMEDAs is

in the "Main.m" file. active-Tr-RMMEDA, interior-Tr-RMMEDA, SQP-Tr-RMMEDA have the

different inner optimisation methods in the "Main.m". As for Time-Tr-RMMEDA, the time cost

of TCA is recorded to run RMMEDA on randomly generated solutions after each change. The

output data files are generated by running the code in the file named "Results" under the folder of

each Tr-RMMEDA. A folder named "POF-AfTr" under the folder "Results" of Tr-RMMEDAs is

created to store the transferred solutions after changes. In addition, a folder "runtime" under the

"Results" is used to record the runtime of Tr-RMMEDAs with different inner optimisation

methods.

https://doi.org/10.5281/zenodo.5509255
https://doi.org/10.5281/zenodo.4289094

Figure 12. Hierarchical structure of the code repositories in [61].

Figure 13. Hierarchical structure of the code repositories in [62].

Bibliography

[1] B. Das, N. C. Krishnan and D. J. Cook, "RACOG and wRACOG: Two probabilistic

oversampling techniques," IEEE transactions on knowledge and data engineering, vol. 27,

p. 222–234, 2014.

[2] H. Zhang and M. Li, "RWO-Sampling: A random walk over-sampling approach to

imbalanced data classification," Information Fusion, vol. 20, p. 99–116, 2014.

[3] H.-G. Beyer and B. Sendhoff, "Robust optimization–a comprehensive survey," Computer

methods in applied mechanics and engineering, vol. 196, no. 33-34, pp. 3190-3218, 2007.

[4] J. W. Kruisselbrink, Evolution strategies for robust optimization, Leiden: Leiden

University, 2012.

[5] M. Farina, K. Deb and P. Amato, "Dynamic multiobjective optimization problems: test

cases, approximations, and applications," IEEE Transactions on evolutionary computation,

vol. 8, p. 425–442, 2004.

[6] A. Fernández, S. Garcıá, M. Galar, R. C. Prati, B. Krawczyk and F. Herrera, Learning from
imbalanced data sets, vol. 11, Springer, 2018.

[7] B. Krawczyk, "Learning from imbalanced data: open challenges and future directions,"

Progress in Artificial Intelligence, vol. 5, p. 221–232, 2016.

[8] J. Kong, T. Rios, W. Kowalczyk, S. Menzel and T. Bäck, "On the performance of

oversampling techniques for class imbalance problems," in Pacific-Asia Conference on

Knowledge Discovery and Data Mining, 2020.

[9] N. V. Chawla, K. W. Bowyer, L. O. Hall and W. P. Kegelmeyer, "SMOTE: synthetic

minority over-sampling technique," Journal of artificial intelligence research, vol. 16, p.

321–357, 2002.

[10] H. He, Y. Bai, E. A. Garcia and S. Li, "ADASYN: Adaptive synthetic sampling approach

for imbalanced learning," in 2008 IEEE international joint conference on neural networks

(IEEE world congress on computational intelligence), 2008.

[11] S. Barua, M. M. Islam, X. Yao and K. Murase, "MWMOTE–majority weighted minority

oversampling technique for imbalanced data set learning," IEEE Transactions on

knowledge and data engineering, vol. 26, p. 405–425, 2012.

[12] M. Kubat, S. Matwin and others, "Addressing the curse of imbalanced training sets: one-

sided selection," in Icml, 1997.

[13] J. Laurikkala, "Improving identification of difficult small classes by balancing class

distribution," in Conference on Artificial Intelligence in Medicine in Europe, 2001.

[14] K. Napierala and J. Stefanowski, "Types of minority class examples and their influence on

learning classifiers from imbalanced data," Journal of Intelligent Information Systems, vol.

46, p. 563–597, 2016.

[15] M. M. Breunig, H.-P. Kriegel, R. T. Ng and J. Sander, "LOF: identifying density-based

local outliers," in Proceedings of the 2000 ACM SIGMOD international conference on

Management of data, 2000.

[16] L. Kotthoff, C. Thornton, H. H. Hoos, F. Hutter and K. Leyton-Brown, "Auto-WEKA 2.0:

Automatic model selection and hyperparameter optimization in WEKA," Journal of

Machine Learning Research, vol. 18, pp. 1-5, 2017.

[17] C. Thornton, F. Hutter, H. Hoos and K. Leyton-Brown, "Auto-WEKA: Combined Selection

and Hyperparameter Optimization of classification algorithms," KDD, 2012.

[18] D. A. Nguyen, J. Kong, H. Wang, S. Menzel, B. Sendhoff, A. Kononova and T. Bäck,

"Improved Automated CASH Optimization with Tree Parzen Estimators for Class

Imbalance Problems," in The 8th IEEE International Conference on Data Science and

Advanced Analytics (DSAA2021), Porto, Portugal, 2021.

[19] D. A. Nguyen, J. Kong, H. Wang, S. Menzel, B. Sendhoff, A. Kononova and T. Bäck,

"Supplementary Material for Improved Automated CASH Optimization with Tree Parzen

Estimators for Class Imbalance Problems," https://doi.org/10.5281/zenodo.5163207, 2021.

[20] H. Han, W.-Y. Wang and B.-H. Mao, "Borderline-SMOTE: A New Over-Sampling Method

in Imbalanced Data Sets Learning," 2005.

[21] F. Last, G. Douzas and F. Bacao, Oversampling for Imbalanced Learning Based on K-

Means and SMOTE, 2017.

[22] H. M. Nguyen, E. W. Cooper and K. Kamei, "Borderline Over-Sampling for Imbalanced

Data Classification," Int. J. Knowl. Eng. Soft Data Paradigm., vol. 3, p. 4–21, 4 2011.

[23] imbalanced-learn, "RandomOverSampler," [Online]. Available: https://imbalanced-

learn.org/stable/generated/imblearn.over_sampling.RandomOverSampler.html.

[24] I. Tomek, "Two modifications of CNN," IEEE Trans. Systems, Man and Cybernetics, vol.

6, p. 769–772, 1976.

[25] K. Gowda and G. Krishna, "The condensed nearest neighbor rule using the concept of

mutual nearest neighborhood (Corresp.)," IEEE Transactions on Information Theory, vol.

25, pp. 488-490, 7 1979.

[26] D. L. Wilson, "Asymptotic Properties of Nearest Neighbor Rules Using Edited Data," IEEE

Transactions on Systems, Man, and Cybernetics, Vols. SMC-2, pp. 408-421, 7 1972.

[27] I. Tomek, "An Experiment with the Edited Nearest-Neighbor Rule," IEEE Transactions on

Systems, Man, and Cybernetics, Vols. SMC-6, pp. 448-452, 1976.

[28] M. R. Smith, T. Martinez and C. Giraud-Carrier, "An Instance Level Analysis of Data

Complexity," Mach. Learn., vol. 95, p. 225–256, 5 2014.

[29] J. Ziang, "KNN approach to unbalanced data distributions: a case study involving

information extraction," Proc. Int'l. Conf. Machine Learning1 (ICML'03), Workshop

Learning from Imbalanced Data Sets, 2003.

[30] imbalanced-learn.org, "ClusterCentroids," [Online]. Available: https://imbalanced-

learn.org/stable/generated/ imblearn.under_sampling.ClusterCentroids.html.

[31] imbalanced-learn.org, "RandomUnderSampler," [Online]. Available: https://imbalanced-

learn.org/stable/generated/imblearn.under_sampling.RandomUnderSampler.html.

[32] G. Batista, R. C. Prati and M. C. Monard, "A study of the behavior of several methods for

balancing machine learning training data," ACM SIGKDD explorations newsletter, vol. 6,

p. 20–29, 2004.

[33] G. Batista, A. Bazzan and M.-C. Monard, "Balancing Training Data for Automated

Annotation of Keywords: a Case Study.," the Proc. Of Workshop on Bioinformatics, pp. 10-

18, 1 2003.

[34] G. Lemaître, F. Nogueira and C. K. Aridas, "Imbalanced-learn: A Python Toolbox to Tackle

the Curse of Imbalanced Datasets in Machine Learning," Journal of Machine Learning

Research, vol. 18, pp. 1-5, 2017.

[35] A. Ben-Tal, L. E. Ghaoui and A. Nemirovski, Robust optimization, Princeton University

Press, 2009.

[36] F. Jurecka, Robust design optimization based on metamodeling techniques, Munich:

Technical University of Munich, 2007.

[37] S. Ullah, H. Wang, S. Menzel, B. Sendhoff and T. Bäck, "An Empirical Comparison of

Meta-Modeling Techniques for Robust Design Optimization," in IEEE Symposium Series

on Computational Intelligence, Xiamen, 2019.

[38] S. Ullah, H. Wang, S. Menzel, B. Sendhoff and T. Bäck, "Exploring Dimensionality

Reduction Techniques for Efficient Surrogate-Assisted Optimization," in IEEE Symposium

Series on Computational Intelligence, Canberra, 2020.

[39] S. Ullah, H. Wang, S. Menzel, B. Sendhoff and T. Bäck, "A New Acquisition Function for

Robust Bayesian Optimization of Unconstrained Problems," in Genetic and Evolutionary

Conference Companion, Lille, 2021.

[40] C. M. Bishop, Pattern recognition and machine learning, springer, 2006.

[41] I. Goodfellow, A. Courville and Y. Bengio, Deep learning. Vol. 1. No. 2., Cambridge: MIT

press, 2016.

[42] D. P. Kingma and M. Welling, "Auto-encoding variational bayes," in Proceedings of the

2nd International Conference on Learning Representations (ICLR), 2013.

[43] D. P. Kingma, D. J. Rezende, S. Mohamed and M. Welling, "Semi-supervised learning with

deep generative models," in Advances in neural information processing systems, 2014.

[44] S. T. Roweis and L. K. Saul, "Nonlinear dimensionality reduction by locally linear

embedding," Science, vol. 290, no. 5500, pp. 2323-2326, 2000.

[45] M. Belkin and P. Niyogi, "Laplacian eigenmaps for dimensionality reduction and data

representation," Neural computation, vol. 15, no. 6, pp. 1373-1396, 2003.

[46] P. Demartines and J. Herault, "Curvilinear component analysis: A self-organizing neural

network for nonlinear mapping of data sets," IEEE Transactions on neural networks, vol.

8, no. 1, pp. 148-154, 1997.

[47] N. Hansen, A. Auger, R. Ros, O. Mersmann, T. Tušar and D. Brockhoff, "COCO: A

platform for comparing continuous optimizers in a black-box setting," Optimization

Methods and Software, pp. 114-144, 2021.

[48] S. ur Rehman, M. Langelaar and F. van Keulen, "Efficient Kriging-based robust

optimization of unconstrained problems," Journal of Computational Science, vol. 5, no. 6,

pp. 872-881, 2014.

[49] S. J. Pan and Q. Yang, "A survey on transfer learning," IEEE Transactions on knowledge

and data engineering, vol. 22, p. 1345–1359, 2009.

[50] G. Ruan, G. Yu, J. Zheng, J. Zou and S. Yang, "The effect of diversity maintenance on

prediction in dynamic multi-objective optimization," Applied Soft Computing, vol. 58, p.

631–647, 2017.

[51] A. Zhou, Y. Jin and Q. Zhang, "A population prediction strategy for evolutionary dynamic

multiobjective optimization," IEEE transactions on cybernetics, vol. 44, p. 40–53, 2013.

[52] M. Jiang, Z. Huang, L. Qiu, W. Huang and G. G. Yen, "Transfer learning-based dynamic

multiobjective optimization algorithms," IEEE Transactions on Evolutionary Computation,

vol. 22, p. 501–514, 2017.

[53] Q. Zhang, A. Zhou and Y. Jin, "RM-MEDA: A regularity model-based multiobjective

estimation of distribution algorithm," IEEE Transactions on Evolutionary Computation,

vol. 12, p. 41–63, 2008.

[54] K. Deb, A. Pratap, S. Agarwal and T. A. M. T. Meyarivan, "A fast and elitist multiobjective

genetic algorithm: NSGA-II," IEEE transactions on evolutionary computation, vol. 6, p.

182–197, 2002.

[55] S. Ben-David, J. Blitzer, K. Crammer, A. Kulesza, F. Pereira and J. W. Vaughan, "A theory

of learning from different domains," Machine learning, vol. 79, p. 151–175, 2010.

[56] A. Smola, A. Gretton, L. Song and B. Schölkopf, "A Hilbert space embedding for

distributions," in International Conference on Algorithmic Learning Theory, 2007.

[57] J. Shawe-Taylor, N. Cristianini and others, Kernel methods for pattern analysis, Cambridge

university press, 2004.

[58] M. Helbig and A. Engelbrecht, "Benchmark functions for cec 2015 special session and

competition on dynamic multi-objective optimization," Dept. Comput. Sci., Univ. Pretoria,

Pretoria, South Africa, Rep, 2015.

[59] J. Nocedal and S. Wright, Numerical optimization, Springer Science & Business Media,

2006.

[60] J. Kong, W. Kowalczyk, S. Menzel and T. Bäck, "Improving Imbalanced Classification by

Anomaly Detection," in International Conference on Parallel Problem Solving from

Nature, Leiden, 2020.

[61] G. Ruan, L. L. Minku, S. Menzel, B. Sendhoff and X. Yao, "When and how to transfer

knowledge in dynamic multi-objective optimization," in 2019 IEEE Symposium Series on

Computational Intelligence (SSCI), 2019.

[62] G. Ruan, L. L. Minku, S. Menzel, B. Sendhoff and X. Yao, "Computational Study on

Effectiveness of Knowledge Transfer in Dynamic Multi-objective Optimization," in 2020

IEEE Congress on Evolutionary Computation (CEC), 2020.

	Executive summary
	Major Achievements
	1. Introduction
	2. Learning from Imbalanced Data
	2.1. On the Performance of Oversampling Techniques for Class Imbalance Problems
	2.2. Improving Imbalanced Classification by Introducing Additional Attributes

	3. Automated Machine Learning
	3.1. Automatically Optimize the Class Imbalance Problems

	4. Model-Assisted Robust Optimization
	4.1. Investigation of Modelling Techniques for Robust Optimization
	4.1. Investigation of Dimensionality Reduction Techniques for Efficient SAO
	4.2. Extending the Moment-Generating Function of Improvement (MGFI) for Robust Bayesian Optimization (RBO)

	5. Knowledge Transfer in Dynamic Multi-Objective Optimization
	5.1. When and How to Transfer Knowledge in Dynamic Multi-objective Optimization?
	5.2. Improving the Efficiency of Knowledge Transfer in Dynamic Multi-objective Optimization

	6. Summary and Outlook
	Appendix
	1. User Manual for Section 2
	2. User Manual for Section 3
	3. User Manual for Section 4
	4. User Manual for Section 5

	Bibliography

