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Executive Summary 
 

This document provides a concise report on the research invested and the scientific contributions 

made regarding the work package 2.3 in ECOLE. This work package deals with the issue of 

uncertainty and/or noise within the context of black-box design optimization. A systematic 

empirical comparison was performed in ECOLE to discuss the suitability of surrogate models for 

solving such problems in the face of uncertainty, in addition to the determination of training sample 

size. The findings suggest that in 32/36 test cases, surrogate-assisted optimization yields an optimal 

or suboptimal value of the original function, based on a 100 independent runs of the Sequential 

Least Square Programming algorithm for global optimization. The training sample size for these 

surrogate models was set to be linear in the search dimensions. Overall, the results demonstrate 

the superiority of Kriging, Support Vector Machines, and Polynomial regression as they achieve 

high modeling accuracy in 34/36 test cases, and the optimal point on the model landscape is close 

to the true optimum of the test function in these cases.  

 

Major Achievements 
 

Major scientific achievements regarding the work package 2.3 are presented below. In particular, 

short answers to some of the most important research questions − practical issues − are described: 

 

Research Questions Discussion 

Is surrogate modeling applicable to solve 

robust optimization problems − problems 

affected by uncertainties and/or noise? 

Our findings indicate the practical 

applicability of surrogate modeling for robust 

optimization (cf. Table VI). 

 

How much training data is required to 

construct a (good) surrogate model of the 

objective function under uncertainty? 

For optimization problems with small 

dimensionality, the training sample size can 

be a linear function of dimensionality (cf. 

Figs. (3-8)). For problems with high 

dimensionality, further research is needed. 

 

Which modeling technique is best suited to 

solve the robust optimization problems? 

Our findings indicate (and validate) Kriging, 

Polynomials and Support Vector Machines as 

the most promising modeling techniques in 

this context (cf. Tables (IV-VI)). 

 

 

Does noise level significantly affect the 

quality of the surrogate models? 

Our findings do not indicate that (cf. Figs. (3-

8)). Note, however, that our research here 

does not involve complex problems, e.g., with 

high dimensionality, multi-objective cases, 

multiplicative noise. Further research is 

required to validate it on more complex cases. 

 

 

 

 



 

 

 

 

 

 

1. Introduction 

 
ECOLE aims at shortening the product-development cycle, reducing the resource consumption 

during the complete process, and creating more balanced and innovative products. One of the most 

important challenges ECOLE addresses the presence of uncertainties and/or noise within the 

system (or model of the system), for which optima are sought. The issue of handling uncertainties 

and/or noise in the design optimization process is important for two main reasons: 

 

1) Uncertainties or noise can affect the objective landscape significantly [1]. Therefore, the 

theoretical optimum found by common optimization algorithms may not be optimal for 

practical applications where unexpected drift and changes can occur. 

2) Uncertainties or noise can affect the accuracy and convergence speed of optimization 

algorithms [1] [2], thereby directly affecting the quality of the optimal solution. 

This report summarizes the work and research invested in work package 2.3 which embroils the 

issue of efficiently solving optimization problems subject to uncertainty. In this report, we 

therefore summarize the following scientific findings and research outcomes pertaining to the 

work package 2.3: 

 

• Literature study on the presence of uncertainty and/or noise in continuous black-box 

optimization (Sec. 2). We concisely summarize the sources of uncertainty and/or noise 

based on the existing work [1] [2] [3] [4] [5]. Sec. 2 is further associated with a summary 

of methodologies for modeling uncertainties, and practical scenarios for robust 

optimization (RO). 

• Literature study on robust optimization (Sec. 3). We encapsulate the practical goal for 

robust optimization based on robust counterpart approach [3]. Two robust counter 

approaches – robust regularization based on the minimax principle, and composite 

robustness – are described. 

• Empirical investigation of model-assisted robust optimization (Sec. 4). We provide a 

comprehensive empirical analysis on several practical issues for RO. In this section, we 

focus on efficiently solving the RO problems.  

The following publication of the ECOLE project is contributing to this report: 

 

S. Ullah, H. Wang, S. Menzel, B. Sendhoff and T. Bäck, "An Empirical Comparison of Meta-

Modeling Techniques for Robust Design Optimization," in IEEE Symposium Series on 

Computational Intelligence, Xiamen, 2019. 

 

 

 
 

 



 

 

 

 

 

2. Uncertainty & Noise in Optimization 

 
Uncertainty is a recurring motif in design optimization. The classical view on black-box 

optimization does not account for uncertainty [4]. It is important to state that in our research, 

uncertainty and/or noise refer to the same concept − unexpected drifts and changes in the 

optimization setup. These unexpected drifts can be found in the design and environmental 

parameters, e.g., temperature, stiffness, and structural rigidity, as well as in the constraints and 

objectives [3]. Accounting for these uncertainties leads to the concept of robust design 

optimization (RDO), also called quality engineering [4]. Before discussing the RDO, we provide 

an overview of different sources of uncertainty and/or noise, various methodologies to deal with 

these uncertainties and/or noise, and different scenarios of optimization under uncertainty. An 

example of the black-box optimization loop of a system is provided in Fig. 1, where an optimizer 

is coupled with the system, or model of the system, for which an optimum is sought. The optimizer 

generates some candidate solution(s), which are fed to the system, and some quality score is 

received. Based on this score, the optimizer generates a new set of solutions, and repeats the same 

process. This loop is repeated until either a satisfactory solution has been found, or a predefined 

computational budget or termination criterion has been reached. 

 

  

2.1. Sources of Uncertainty & Noise 

 

One of the ways to distinguish between different forms of uncertainty and/or noise in design 

optimization is by analyzing different parts of the system and looking for the sources of uncertainty 

and/or noise [2]. It is important to state that here the black-box design optimization problems are 

referred to the problems where only the access to evaluating the function value is provided, and 

any analytical properties, e.g., gradient/Hessian/convexity, are not available to the optimization 

process. From Fig.1, it can be argued that uncertainties and/or noise can arise in different parts of  

the optimization pipeline. This aspect is further highlighted in Fig. 2, where five common sources 

of uncertainty and/or noise are highlighted. These sources include: 

 

Figure 1.  The general setup for black-box optimization. 



 

 

 

 

 

A. Design variables 𝑿 

B. Environmental parameters 𝜶 

C. Output 𝒀 

D. Constraints 𝒈𝒊 

E. Objectives 𝒇𝒊 

 

Type A uncertainties occur since in the real-world realizations, the design variables can be 

controlled with limited precision only. Type B uncertainties occur due to the uncontrollable 

external factors, e.g., outside temperature, wind speed, which can influence the performance of a 

system, for which optima are sought. Note that in the classical black-box design optimization as 

characterized in Fig. 1, such factors are not included. Nonetheless, it is important to discuss that 

such external factors can influence the performance of an otherwise predictable or stable system 

[1]. Type C uncertainties are mostly caused due to the stochastic nature of the measurements and 

the evaluation of the system. Type D uncertainties characterize the inherent vagueness in the 

constraints while formulating a design optimization problem. Type E uncertainties emerge while 

having multiple conflicting objectives. As such, a natural tradeoff between different objectives 

exists.   

      

2.2. Modeling Uncertainty & Noise 

 
Another way to distinguish between different types of uncertainties and/or noise is to consider 

their nature. Here, it is also appropriate to explain the difference between uncertainty and noise. 

The difference between the uncertainty and noise is the same as the difference between epistemic 

and aleatory uncertainty [6]. Epistemic uncertainty refers to the uncertainty which is due to the 

lack of knowledge and/or data, and is, in principle, reducible. Noise, on the other hand, is the same 

as the aleatory uncertainty – uncertainty due to the inherent stochastic nature of a 

measurement/quantity. Note, however, that classifying different types of uncertainties in real-

world scenarios is often not straightforward. Therefore, it is essential to classify different types of 

uncertainties based on the way they can be mathematically modeled within an optimization 

problem. To this end, one can distinguish between three different classes [1]: 

Figure 2. The general black-box optimization setup highlighting different parts of 

the system where uncertainties can arise. 

 



 

 

 

 

 

1) Fuzzy 

2) Deterministic 

3) Probabilistic 

 

Modeling uncertainties using fuzzy logic refers to formulating fuzzy statements about the 

possibility of the state of the uncertain variable. This is usually done with the help of fuzzy sets. 

Modeling uncertainties in a deterministic way refers to modeling the crisp possibility of whether 

a particular state of an uncertain variable is possible or not. This is usually done with the help of a 

crisp set. The last way of modeling uncertainty is the most common in design optimization 

problems. Here, a probability measure can be established on the frequency of event(s) that may 

happen. This is done with the help of probability density functions for continuous variables, and 

probability mass functions in the case of discrete variables. It is also logical to build an intuition 

here that aleatory uncertainty is naturally modeled in a probabilistic fashion. On the other hand, 

epistemic uncertainty can be mathematically modeled using all three approaches. A schematic 

view of different ways to distinguish uncertainties and/or noise is provided in Table I for further 

clarification.  

Conceptual Classification Mathematical Modeling Mathematical Properties 

 

 

Epistemic (uncertainty) 

Possibilistic Uncertainty domain 

unknown, probabilities 

unknown 

Deterministic Uncertainty domain known; 

probabilities unknown 

Aleatory (noise) Probabilistic Uncertainty domain known; 

probabilities known 

 

 

2.3. Scenarios of Uncertainty & Noise 

 

Five different sources of uncertainty and/or noise, combined with three different ways to model 

them within the optimization problem, have been identified. This gives rise to 15 different 

scenarios that can be faced when solving real-world design optimization problems. Note, however, 

that some of these scenarios occur more often than others. As such, from a practical point of view, 

it is desirable to focus on those scenarios. Table II summarizes the sources (classes) of uncertainties 

alongside the mathematical ways to model them. From the discussion in this section, it is clear that 

there are at least five most common sources of uncertainty and/or in noise in the black-box design 

optimization pipeline. Furthermore, there are at least three different ways of mathematically 

modeling these uncertainties. A distinction between aleatory and epistemic uncertainty, and 

correspondingly, between noise and uncertainty [7] has also been made. Note, however, that within 

the scope of ECOLE, discussing all these manifestations of uncertainties is infeasible. Therefore, 

it is logical to choose a set of uncertainties which are most interesting to study from the practical 

point of view of design optimization. To this end, Type A and B uncertainties are selected which 

Table I. A classification of different types of uncertainties based on their mathematical 

properties and conceptual distinction. 
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are the most common ones in design optimization. The reason for selecting these types of 

uncertainties include the limited machine precision, i.e., the implementation errors, production 

tolerances, and the change in environmental and operating conditions. For the remainder of this 

report, we will therefore discuss Type A and B uncertainties – uncertainties which are commonly 

found in the design and environmental parameters of a design optimization problem. Moreover, 

our way of modeling these uncertainties in ECOLE will be based on deterministic sets and 

probability distributions. Having discussed the different manifestations of uncertainty and/or 

noise, the next section provides an overview on RO. 

 

Class Type 

A) Uncertainties and/or noise in the 

design-variables 

Possibilistic 

Deterministic 

Probabilistic 

B) Uncertainties and/or noise in the 

environmental parameters 

Possibilistic 

Deterministic 

Probabilistic 

C) Uncertainties and/or noise in the 

output 

Possibilistic 

Deterministic 

Probabilistic 

           D)    Vagueness in the constraints Possibilistic 

Probabilistic 

    E)      Preference uncertainty in the 

objectives 

Possibilistic 

Deterministic 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

  Table II. Classification and categorization of different manifestations of 

uncertainty and/or noise. 
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3. Robust Optimization  

 
Various sources of uncertainty and/or noise within optimization problems have been analyzed in 

Sec 2. Different ways to mathematically model these uncertainties have also been described. Type 

A and B uncertainties have been identified as the most relevant ones to the project. This section 

shares the project’s approach towards modeling these uncertainties in a deterministic or a 

probabilistic fashion. Based on this, it is possible to measure the impact of these uncertainties on 

the optimization problems, and accordingly adapt the optimization setup to minimize the effect of 

these uncertainties. This is known in the literature as the Robust Counterpart Approach (RCA) [3], 

which is discussed in Sec. 3.1. 

 

3.1. Robust Counterpart Approach 

 

Robust optimization (RO) is often referred to as the practice of optimization which deals with the 

unexpected drifts and changes in the optimization setup. For the uncertainties considered in the 

ECOLE project, two most important questions [2] need to be tackled: 

 

• In what ways do these uncertainties affect the optimization algorithms and the practical 

applicability of the solution(s) found by the algorithms? 

• How should the optimization algorithms be adapted to mitigate the effects of these 

uncertainties? 

 

For handling these two questions, the most suitable approach turns out to be the replacement of 

the original optimization goal with the goal of RO. This approach is often referred to as the Robust 

Counterpart Approach (RCA), and is the most common approach in engineering applications. The 

goal of RO, however, depends on the source(s) of uncertainty and the way in which the uncertainty 

is mathematically modeled. In general, we can define the practical goal of RO [2] as: 

 

“Given an optimization problem with uncertainty and/or noise, and given an optimization goal and 

a limited number of computational resources, the goal of robust optimization is to use these 

computational resources to find the best solution(s) despite uncertainty and/or noise, which are 

still optimal and useful in the face of uncertainties/noise.” 

 

Keeping the general goal of RO in mind, RCA emphasizes on two aspects. Firstly, modeling the 

uncertainties and/or noise in different parts of the system in a probabilistic or a deterministic 

fashion. Secondly, adapting the practical goal of optimization to minimize the effects of modeled 

uncertainties and/or noise in the first step. In the case of Type A and B uncertainties, this leads to 

two different concepts − the worst-case robust optimization based on the minimax principle, and 

the composite robustness. These two concepts model the uncertainties in deterministic and 

probabilistic fashion respectively, and thereon adapt the goal of optimization based on modeled 

uncertainties. 

 

 

 

 



 

 

 

 

 

3.2. The Minimax Principle 

 

In ECOLE, we emphasize on Type A and B uncertainties – uncertainties which are commonly 

found in the design and environmental parameters of a design optimization problem. The 

robustness taking into account the uncertainties of Type A and B is referred to as Sensitivity 

Robustness [1]. In ECOLE, we consider real-valued black-box optimization problems of the form 

𝑓: 𝓢 → ℝ, 𝓢 ⊆ ℝ𝒅, where the so-called feasible region 𝓢 is specified by the inequality constraints 

𝑔𝑗(𝑋) ≤ 0 (𝑗 ∈ {1, … , 𝐽}), and the equality constraints ℎ𝑘(𝑋) = 0 (𝑘 ∈ {1, … , 𝐾}), X ∈ 𝓢. 

Without loss of generality, the objective function 𝑓 is subject to minimization. The effect of 

additive noise δX ∈ ℝ𝑑 in design parameters of the objective function is formulated as: 

 

 𝒇(𝒙)̂ = 𝒇(𝒙 + 𝜹𝒙), (1) 

 

where 𝑓(𝑥)̂ is the noisy counterpart of the objective function 𝑓(𝑥). The minimax principle [3] 

emphasizes on minimizing the worst output (highest value) of the noisy function 𝑓(𝑥)̂. Given an 

objective function 𝑓(𝑥) to be minimized, this RCA first defines a neighborhood 𝑵𝛜(𝒙) of design 

𝒙 whose size is determined by the parameter 𝜖 >  0. Then, an upper-bound of 𝑓(𝑥) is defined by 

taking into account the worst output (highest value) of design 𝑥 including neighborhood 𝑁ϵ(𝑥). 

Finally, the goal of RO is defined as minimizing this upper bound [1] [3]. The minimum returned 

by using this strategy is called the “least upper-bound”. Formally, the robust counterpart 𝑅(𝑥) 

based on this principle is defined as: 

 

 𝑹(𝒙) =    sup 𝒇(𝛏), 𝒘𝒉𝒆𝒓𝒆  𝛏 ∈ 𝑵𝛜(𝒙) (2) 

 

The goal of the RO then becomes to solve Eq. (2). This RCA is known as the robust regularization 

since 𝜖 acts as a regularization parameter, i.e., it defines the size of the neighborhood. 

 

3.3. Composite Robustness 

 

Different from the minimax principle, the designer can also optimize the expected output of a noisy 

function 𝔼[𝑓(𝑥)]̂  whilst minimizing the dispersion, i.e., standard deviation σ [𝑓(𝑥)],̂  
simultaneously [5]. In ECOLE, we refer to it as the composite robustness, same as in [5]. This 

robustness criterion, however, requires the noise δX to be specified in the form of a probability 

distribution. The expectation 𝔼[𝑓(𝑥)]̂  and dispersion, i.e., standard deviation, σ [𝑓(𝑥)]̂  of the noisy 

objective function are combined at each design point 𝑥 in 𝓢 to produce a robust scalar output. The 

RO goal thus becomes to find a design point 𝑥∗ in 𝓢 which minimizes this scalar. This robust 

composition is formally defined in Eq. (3): 

 

                𝒎𝒊𝒏𝒊𝒎𝒊𝒛𝒆 𝑹(𝒙) = 𝔼[𝒇(𝒙)]̂ + σ [𝒇(𝒙)]̂  (3) 

 

where 𝑓(𝑥)̂ = 𝑓(𝑥 + 𝛿𝑥) and δ𝑥 ∼ 𝒩(0, s2). Notably, 𝐬 denotes the standard deviation of the 

probability distribution of the noise, and depends on the range of design parameters and noise 

level chosen. 

 



 

 

 

 

 

 

4. Surrogate-Assisted Robust Optimization 

 
The idea of surrogate-assisted robust optimization (SARO) is to employ an empirical 

approximation model, called the surrogate model or a metamodel, for optimizing a noisy objective 

function 𝒇(𝒙)̂ such as the one presented in Eqs. (1-3) [5]. This section provides a brief introduction 

to surrogate modeling. It then shifts to discuss the basics of SARO. Finally, the results from 

ECOLE [8] are presented.  

 

4.1. Surrogate-Assisted Optimization 

 

The idea of surrogate modeling is to build an empirical approximation model 𝒇(𝒙)̂ of an objective 

function 𝒇(𝒙). The approximation 𝒇(𝒙)̂ then acts as the surrogate model, also called the 

metamodel of 𝒇(𝒙). This abstraction is useful in many situations. For instance, it simplifies the 

task to a great extent in simulation-based modeling and optimization [9]. It can also provide the 

designer with an opportunity to evaluate 𝒇(𝒙) indirectly if the exact computation of 𝒇(𝒙) is too 

costly and/or complex. Additionally, it can provide practically useful insights to the designer. 

Surrogate modeling first evaluates 𝒇(𝒙) at several design points of interest (𝒙𝟏, 𝒙𝟐, … , 𝒙𝑵), e.g., 

using Latin hypercube sampling, Plackett-Burman, Box-Behnken design, and generates the data 

set of input and output pairs − sampled design points and resulting function values. The data 

generated in this fashion is used to build a nonlinear regression model for approximating the 

objective function 𝒇(𝒙). In principle, any regression-based machine learning [10] methodology, 

e.g., Kriging, Neural networks, Polynomials, may be used. Since no regression model can perfectly 

approximate the original function 𝒇(𝒙) by means of a limited number of evaluations, the resulting 

model 𝒇(𝒙)̂ will be relatively inaccurate. 

 

Although surrogate modeling provides useful abstraction for solving complex and/or costly 

optimization problems, it must be carefully employed. For instance, selecting the set of input points 

{(𝒙𝟏, 𝒙𝟐, … , 𝒙𝑵)} to evaluate 𝒇(𝒙) is not straightforward. To this end, the designer can take help 

from design of experiment (DoE) methodologies such as Latin hyper-cube sampling, factorial 

designs etc. Note also that the (training) sample size 𝑵 to evaluate 𝒇(𝒙) is another parameter that 

can be varied, without knowing a priori what the optimal setting is. This is since the designer is 

interested in finding a surrogate 𝒇(𝒙)̂ (almost) as good as the original function 𝒇(𝒙) with minimum 

training data − function evaluations. Consequently, in most applications, the designer must come 

to a compromise on the quality of the surrogate model and computational budget.  

 

4.2. Empirical Comparison of Surrogate Models for Robust Optimization 

 

It has been already established that surrogate models aim at replacing the often complex and/or 

costly function evaluations with the help of an empirical approximation model [11]. This model 

can be used in a variety of ways. In the context of global optimization, this model replaces the 

function evaluations within the optimization loop. Many different supervised learning techniques 

[12], e.g., Neural Networks, Kriging and Random Forest, have been applied as surrogate models. 

Note, however, that surrogate models were initially proposed to replace deterministic computer 



 

 

 

 

 

simulations. Consequently, their suitability in the context of optimization under uncertainty 

remains to be evaluated [5]. Earlier studies ignored the multivariate analysis of the performance 

of the surrogate models in the context of RO. In ECOLE [8], we performed a comprehensive 

quality assessment of the surrogate modeling techniques for the scenarios of RO. Our research 

involved the impact of dimensionality, problem landscape, noise level, robustness criterion and 

sample size. This section presents some of the most important details on the experimental setup 

and the associated results. 

 

4.2.1. Test Problems 

 

Six unconstrained, single-objective optimization problems were chosen in ECOLE. Each of these 

problems was uniquely identified based on the choice of the test function and dimensionality 𝐷 ∈
{2,5,10}. The chosen test functions are known as Ackley, Branin, Sphere and Rastrigin. Among 

these test functions, Branin was only defined for 2𝐷, Sphere for 5𝐷, Rastrigin for 10𝐷 and Ackley 

was tested for all three dimensionality values. This led to six optimization problems. Additionally, 

each one of these problems was investigated on three different levels of additive noise − 

{5, 10, 20} % noise perturbation based on the nominal values of the design parameters − and two 

robustness strategies − robustness based on the minimax principle and the composite robustness. 

All six optimization problems are presented in Table III, including the box constraints and key 

landscape characteristics. 

 

 
 

Function Landscape Dimensionality Bounds 

Ackley Multi-Modal 2 𝑥𝑖 ∈ [−32.768,32.768] 
Branin Multi-Global 2               𝑥1 ∈ [−5,10], 𝑥2 ∈ [0,15] 
Ackley Multi-Modal 5 𝑥𝑖 ∈ [−32.768,32.768] 
Sphere Isotropic 5 𝑥𝑖 ∈ [−5,5] 
Ackley Multi-Modal 10 𝑥𝑖 ∈ [−32.768,32.768] 

Rastrigin Multi-Modal 10 𝑥𝑖 ∈ [−5.12,5.12] 
 

4.2.2. Noise Levels 

 

In our research, three levels of additive noise δ𝑥 were selected. The effect of additive noise in 

design parameters is now elaborated. Let 𝑅 = |𝑢 − 𝑙| be the absolute range of design parameters, 

where 𝑢 and 𝑙 serve as the upper and lower bounds of the box constraints. Further, let 𝑍 be the 

additive noise level. For the case of robust optimization based on the minimax principle, this means 

having a neighborhood of design point 𝑥 whose scale ϵ is defined by the parameters range 𝑅 and 

noise level 𝑍. As an example, the Ackley function is commonly defined from 𝑙 =  −32.768 to 

𝑢 =  32.768, having an absolute range of 𝑅 =  65.536. Considering the first noise level − 𝑍 =
5 % in Eq. (2) − this means the regularization parameter ϵ =  𝑍 ∗ 𝑅 =  0.05 ∗ 65.536 =
 3.2768. In ECOLE, we subsumed that noise was symmetric. Hence, a neighborhood 
[−3.2768, 3.2768] of each design point 𝑥 for the Ackley function is constructed and Eq. (2) can 

Table III. All six optimization problems with test functions, key landscape characteristics, 

dimensions, and box constraints. 



 

 

 

 

 

be solved. Note also, that we classified all parameters as design ones. However, the real-world 

engineering applications can have additional environmental parameters which can be modeled in 

exactly the same way. For composite robustness in our research, we employed a normal 

distribution 𝒩(0, s2), where the standard deviation is 𝑠 =  𝑍 ∗ 𝑅/6, and 𝑍 and 𝑅 serve as the 

noise level and the absolute range of parameters. 

 

4.2.3. Surrogate Models and Sample Size 

 

The selected modeling techniques were Kriging, Support Vector Machines (SVMs), Radial Basis 

Function Network (RBFN), Random Forest (RF), K-Nearest Neighbors (KNNs) and Elastic-net 

with second order polynomial regression function (ELN), respectively. The surrogate models were 

evaluated on two criteria − modeling accuracy and the quality of the robust optimal solution. The 

former was measured using the so-called relative mean absolute error (RMAE): 

 

 
RMAE =

𝟏

𝑴
∑ 𝟏𝟎𝟎

𝑴

𝒍=𝟏
⋅ (

|𝒚𝒍 − 𝒚𝒍̂|

|𝒚𝒍|
) 

(4) 

 

where 𝑴 denotes the size of the testing data set. Similarly, 𝒚𝒍 and 𝒚𝒍̂ correspond to the true and 

approximated/predicted function values. In all cases, the surrogate modeling techniques were trained 

on ten different training sample sizes as: 𝑵 = {𝟓, 𝟏𝟎, 𝟏𝟓, 𝟐𝟎, 𝟐𝟓, 𝟑𝟎, 𝟑𝟓, 𝟒𝟎, 𝟒𝟓, 𝟓𝟎} × 𝑫, where 𝑫 

stands for the dimensionality. The sampled design points {(𝒙𝟏, 𝒙𝟐, … , 𝒙𝑵)} 𝐚𝐧𝐝 {(𝒙𝟏, 𝒙𝟐, … , 𝒙𝑴)}  to 

train and test the surrogate model were generated using the maximum-distance Latin hyper-cube 

sampling scheme. To achieve the best results in the model training, a detailed hyperparameter 

optimization (HPO) with cross validation was also performed. 

 

4.2.4. Appraising the Surrogate Models 

 

The criterion of RMAE in Eq. (4) helps to understand the modeling accuracy and computational 

tractability − accuracy vs computational budget − of the modeling techniques. In ECOLE, another 

criterion to evaluate the surrogate models based on the quality of the optimal robust solution was 

also utilized. For this criterion, however, the optimal values on the surrogate models 𝑹(𝒙)̂ and the 

robust optimization problem 𝑹(𝒙) were found with the help of a benchmark optimization 

algorithm. To this end, Sequential Least Square Programming (SLSQP) was chosen as the 

benchmark. This second criterion helped to understand the reliability of the surrogate models in 

practical situations for RO. To evaluate the surrogate models on this criterion, each surrogate was 

first trained using HPO on a training sample of 𝑵 = 𝟓𝟎 × 𝑫, where 𝑫 denotes the dimensionality 

of the problem. An optimization run with SLSQP was then performed on the trained surrogate to 

find the optimal values of 𝑹(𝒙). This process was repeated for 𝟏𝟎𝟎 times, and the mode of the 

group was chosen as the final optimal value of the 𝑹(𝒙) using the surrogate model.  

 

4.2.5. Results 

 

Graphs depicting the accuracy of the surrogate models by varying the (training) sample size, 

evaluated on the basis of RMAE are presented in Figs. (3-8). Standard error (SE) for each RMAE 

computation is also presented in the graphs. Fig. 3 shares the RMAE values on Ackley 𝟐𝑫. 



 

 

 

 

 

Likewise, Fig. 4 shows the RMAE values for Branin 𝟐𝑫. Fig. 5 depicts these values for Ackley 

𝟓𝑫. Fig. 6 presents these results for Sphere 𝟓𝑫. Fig. 7 presents the RMAE values concerning 

Ackley 𝟏𝟎𝑫 and lastly, Fig. 8 shows the results on Rastrigin 𝟏𝟎𝑫. Note that for each case, the 

two best modeling techniques were selected based on the measure of the lowest RMAE, averaged 

over all values of training size 𝑵. A Mann-Whitney U statistical test was then performed to find 

the overall best modeling technique for that case. The 𝒑-values resulting from this test are 

presented in Table IV. In that table, the first column reads the optimization problem under 

consideration, the second column presents the robustness strategies − RR for the robust 

regularization and RC for the robust composition − the third column reports the noise-level, the 

fourth column describes the two best modeling techniques as indicated above, while the last 

column shows the 𝒑-value resulting from the statistical test. The frequencies of the modeling 

techniques to achieve the highest accuracy for all problems are presented in Table V. Table V 

follows the same evaluation criterion − lowest average RMAE.  

 

The results concerning the optimality of 𝑹(𝒙) for all thirty-six cases are presented in Table VI. In 

that table, the first column reports the optimization problem, the second column shows the 

robustness scheme (RR for the robust regularization and RC for the robust composition), the third 

column presents the noise level, the fourth column shows the optimal value of 𝑹(𝒙), and all the 

next columns depict the optimal values of 𝑹(𝒙) proposed by the surrogate models.  

 

Observations from Figs. (3-8) suggest that robustness schemes and noise levels did not have much 

impact on the accuracy of the surrogate models since similar patterns − RMAE curves – are 

detected across rows and columns. Furthermore, these figures show that the Radial Basis Function 

Network (RBFN) had the most variance in prediction. Likewise, these figures characterize that 

setting (linear) training size 𝑵 =  𝑲𝑫 resulted in good modeling accuracy. Note that 𝑲 ∈
{𝟓, 𝟏𝟎, 𝟏𝟓, 𝟐𝟎, 𝟐𝟓, 𝟑𝟎, 𝟑𝟓, 𝟒𝟎, 𝟒𝟓, 𝟓𝟎} is a scalar and 𝑫 denotes the dimensionality of the 

problem. Hence, it can be argued that computational complexity of the surrogate models in our 

research was a linear function of  𝑫. Table IV displays that Kriging, Support Vector Machines 

(SVM) and Polynomial regression (ELN) achieve high accuracy in most test cases. Kriging, in 

particular, performed well on Branin 𝟐𝑫 and Sphere 𝟓𝑫. Polynomial regression (ELN) performed 

well on all 𝟓𝑫 and 𝟏𝟎𝑫 cases whereas SVMs performed excellently in most cases. Table V argues 

that K-Nearest Neighbors (KNNs) and Random Forest (RF) do not achieve high accuracy when 

compared with the other modeling techniques. Finally, Table VI demonstrates that the surrogate 

models were able to find an optimal or suboptimal solution in most cases except Rastrigin𝟏𝟎𝑫. 

Problem Robustness Noise Level 𝑯𝒂 𝒑-value 

Ackley 𝟐𝑫 RR 𝟓 % 𝑲𝑵𝑵 <  𝑺𝑽𝑴 𝟎. 𝟒𝟐𝟓 

Ackley 𝟐𝑫 RR 𝟏𝟎 % 𝑲𝑵𝑵 <  𝑺𝑽𝑴 𝟎. 𝟏𝟗𝟐 

Ackley 𝟐𝑫 RR 𝟐𝟎 % 𝑲𝑵𝑵 <  𝑺𝑽𝑴 𝟎. 𝟎𝟏𝟐 

Table IV. All 36 test cases resulted from the combination of surrogate models, three noise 

levels, two robustness definitions and six optimization problems. In each test case, we pick the 

best two surrogate models in terms of average RMAE. Given the alternative hypothesis, the 

Mann-Whitney U statistical test is performed to check if the surrogate with highest average 

accuracy is significantly better than the alternate using 𝛼 = 0.05. The resulting p-values are 

presented. 



 

 

 

 

 

Ackley 𝟐𝑫 RC 𝟓 % 𝑺𝑽𝑴 <  𝑲𝑵𝑵 𝟎. 𝟏𝟓𝟑 

Ackley 𝟐𝑫 RC 𝟏𝟎 % 𝑺𝑽𝑴 <  𝑲𝑵𝑵 𝟎. 𝟏𝟑𝟔 

Ackley 𝟐𝑫 RC 𝟐𝟎 % 𝑺𝑽𝑴 <  𝑲𝑵𝑵 𝟎. 𝟐𝟖𝟓 

Branin 𝟐𝑫 RR 𝟓 % 𝑺𝑽𝑴 <  𝑲𝒓𝒊𝒈 𝟎. 𝟑𝟗𝟓 

Branin 𝟐𝑫 RR 𝟏𝟎 % 𝑲𝒓𝒊𝒈 <  𝑺𝑽𝑴 𝟎. 𝟒𝟐𝟓 

Branin 𝟐𝑫 RR 𝟐𝟎 % 𝑲𝒓𝒊𝒈 <  𝑺𝑽𝑴 𝟎. 𝟏𝟓𝟑 

Branin 𝟐𝑫 RC 𝟓 % 𝑲𝒓𝒊𝒈 <  𝑺𝑽𝑴 𝟎. 𝟒𝟐𝟓 

Branin 𝟐𝑫 RC 𝟏𝟎 % 𝑲𝒓𝒊𝒈 <  𝑺𝑽𝑴 𝟎. 𝟒𝟐𝟓 

Branin 𝟐𝑫 RC 𝟐𝟎 % 𝑲𝒓𝒊𝒈 <  𝑲𝑵𝑵 𝟎. 𝟎𝟑𝟕 

Ackley 𝟓𝑫 RR 𝟓 % 𝑺𝑽𝑴 <  𝑬𝑳𝑵 𝟎. 𝟎𝟏𝟎 

Ackley 𝟓𝑫 RR 𝟏𝟎 % 𝑺𝑽𝑴 <  𝑬𝑳𝑵 𝟎. 𝟎𝟏𝟎 

Ackley 𝟓𝑫 RR 𝟐𝟎 % 𝑺𝑽𝑴 <  𝑬𝑳𝑵 𝟎. 𝟎𝟏𝟎 

Ackley 𝟓𝑫 RC 𝟓 % 𝑺𝑽𝑴 <  𝑬𝑳𝑵 𝟎. 𝟎𝟎𝟎𝟏 

Ackley 𝟓𝑫 RC 𝟏𝟎 % 𝑺𝑽𝑴 <  𝑬𝑳𝑵 𝟎. 𝟎𝟎𝟎𝟏 

Ackley 𝟓𝑫 RC 𝟐𝟎 % 𝑺𝑽𝑴 <  𝑬𝑳𝑵 𝟎. 𝟎𝟎𝟎𝟏 

Sphere 𝟓𝑫 RR 𝟓 % 𝑲𝒓𝒊𝒈 <  𝑬𝑳𝑵 𝟎. 𝟎𝟎𝟎𝟏 

Sphere 𝟓𝑫 RR 𝟏𝟎 % 𝑲𝒓𝒊𝒈 <  𝑬𝑳𝑵 𝟎. 𝟎𝟎𝟎𝟏 

Sphere 𝟓𝑫 RR 𝟐𝟎 % 𝑲𝒓𝒊𝒈 <  𝑬𝑳𝑵 𝟎. 𝟎𝟎𝟎𝟏 

Sphere 𝟓𝑫 RC 𝟓 % 𝑲𝒓𝒊𝒈 <  𝑬𝑳𝑵 𝟎. 𝟎𝟎𝟎𝟏 

Sphere 𝟓𝑫 RC 𝟏𝟎 % 𝑲𝒓𝒊𝒈 <  𝑹𝑩𝑭𝑵 𝟎. 𝟎𝟎𝟎𝟏 

Sphere 𝟓𝑫 RC 𝟐𝟎 % 𝑲𝒓𝒊𝒈 <  𝑬𝑳𝑵 𝟎. 𝟎𝟎𝟐 

Ackley 𝟏𝟎𝑫 RR 𝟓 % 𝑺𝑽𝑴 <  𝑬𝑳𝑵 𝟎. 𝟎𝟏𝟐 

Ackley 𝟏𝟎𝑫 RR 𝟏𝟎 % 𝑺𝑽𝑴 <  𝑬𝑳𝑵 𝟎. 𝟎𝟎𝟖 

Ackley 𝟏𝟎𝑫 RR 𝟐𝟎 % 𝑺𝑽𝑴 <  𝑬𝑳𝑵 𝟎. 𝟎𝟏𝟓 

Ackley 𝟏𝟎𝑫 RC 𝟓 % 𝑬𝑳𝑵 <  𝑺𝑽𝑴 𝟎. 𝟐𝟖𝟓 

Ackley 𝟏𝟎𝑫 RC 𝟏𝟎 % 𝑬𝑳𝑵 <  𝑺𝑽𝑴 𝟎. 𝟐𝟔𝟎 

Ackley 𝟏𝟎𝑫 RC 𝟐𝟎 % 𝑬𝑳𝑵 <  𝑺𝑽𝑴 𝟎. 𝟏𝟐 

Rastrigin 𝟏𝟎𝑫 RR 𝟓 % 𝑬𝑳𝑵 <  𝑺𝑽𝑴 𝟎. 𝟎𝟔 

Rastrigin 𝟏𝟎𝑫 RR 𝟏𝟎 % 𝑬𝑳𝑵 <  𝑺𝑽𝑴 𝟎. 𝟎𝟔 

Rastrigin 𝟏𝟎𝑫 RR 𝟐𝟎 % 𝑬𝑳𝑵 <  𝑺𝑽𝑴 𝟎. 𝟐𝟑𝟔 

Rastrigin 𝟏𝟎𝑫 RC 𝟓 % 𝑬𝑳𝑵 <  𝑺𝑽𝑴 𝟎. 𝟎𝟑𝟕 

Rastrigin 𝟏𝟎𝑫 RC 𝟏𝟎 % 𝑬𝑳𝑵 <  𝑺𝑽𝑴 𝟎. 𝟏𝟗𝟐 

Rastrigin 𝟏𝟎𝑫 RC 𝟐𝟎 % 𝑬𝑳𝑵 <  𝑺𝑽𝑴 𝟎. 𝟎𝟓𝟐 

 

 

Problem Kriging SVM RBFN KNN RF ELN 

Ackley 𝟐𝑫 𝟎/𝟔 𝟒/𝟔 𝟎/𝟔 𝟐/𝟔 𝟎/𝟔 𝟎/𝟔 

Branin 𝟐𝑫 𝟓/𝟔 𝟏/𝟔 𝟎/𝟔 𝟎/𝟔 𝟎/𝟔 𝟎/𝟔 

Ackley 𝟓𝑫 𝟎/𝟔 𝟔/𝟔 𝟎/𝟔 𝟎/𝟔 𝟎/𝟔 𝟎/𝟔 

Sphere 𝟓𝑫 𝟔/𝟔 𝟎/𝟔 𝟎/𝟔 𝟎/𝟔 𝟎/𝟔 𝟎/𝟔 

Ackley 𝟏𝟎𝑫 𝟎/𝟔 𝟑/𝟔 𝟎/𝟔 𝟎/𝟔 𝟎/𝟔 𝟑/𝟔 

Table V. The frequencies of surrogate-modeling techniques achieving highest accuracy (i.e., 

based on the value of lowest average RMAE) for all six optimization problems are presented. 

 



 

 

 

 

 

Rastrigin 𝟏𝟎𝑫 𝟎/𝟔 𝟎/𝟔 𝟎/𝟔 𝟎/𝟔 𝟎/𝟔 𝟔/𝟔 

 

 

Problem Rob.. NL Orig.. Krig. SVM RBFN KNN RF ELN 

Ackley 𝟐𝑫 RR 𝟓 % 𝟏𝟏 ± 𝟑 𝟏𝟒 ± 𝟐 𝟐𝟐 ± 𝟑 𝟏𝟑 ± 𝟐 𝟏𝟐 ± 𝟑 𝟏𝟒 ± 𝟐 𝟏𝟐 ± 𝟑 

Ackley 𝟐𝑫 RR 𝟏𝟎 % 𝟏𝟔 ± 𝟏 𝟏𝟕 ± 𝟏 𝟐𝟐 ± 𝟏 𝟏𝟖 ± 𝟏 𝟏𝟕 ± 𝟏 𝟏𝟕 ± 𝟏 𝟏𝟔 ± 𝟎 

Ackley 𝟐𝑫 RR 𝟐𝟎 % 𝟐𝟎 ± 𝟎 𝟐𝟏 ± 𝟎 𝟐𝟐 ± 𝟎 𝟐𝟏 ± 𝟎 𝟐𝟏 ± 𝟎 𝟐𝟏 ± 𝟎 𝟐𝟏 ± 𝟎 

Ackley 𝟐𝑫 RC 𝟓 % 𝟓 ± 𝟕 𝟏𝟎 ± 𝟐 𝟐𝟐 ± 𝟕 𝟏𝟎 ± 𝟐 𝟔 ± 𝟒 𝟏𝟎 ± 𝟐 𝟓 ± 𝟓 

Ackley 𝟐𝑫 RC 𝟏𝟎 % 𝟕 ± 𝟔 𝟏𝟎 ± 𝟐 𝟐𝟐 ± 𝟕 𝟏𝟏 ± 𝟐 𝟕 ± 𝟒 𝟏𝟏 ± 𝟐 𝟕 ± 𝟎 

Ackley 𝟐𝑫 RC 𝟐𝟎 % 𝟏𝟎 ± 𝟓 𝟏𝟐 ± 𝟐 𝟐𝟐 ± 𝟓 𝟏𝟐 ± 𝟐 𝟏𝟏 ± 𝟑 𝟏𝟐 ± 𝟐 𝟏𝟎 ± 𝟎 

Branin 𝟐𝑫 RR 𝟓 % 𝟑 ± 𝟑 𝟔 ± 𝟔𝟒 𝟗 ± 𝟑 𝟔 ± 𝟔𝟒 𝟔 ± 𝟓𝟐 𝟔 ± 𝟔𝟒 𝟏𝟕 ± 𝟎 

Branin 𝟐𝑫 RR 𝟏𝟎 % 𝟗 ± 𝟒 𝟏𝟑 ± 𝟖𝟑 𝟏𝟔 ± 𝟑 𝟏𝟑 ± 𝟖𝟑 𝟏𝟑 ± 𝟓𝟔 𝟏𝟑 ± 𝟖𝟑 𝟐𝟓 ± 𝟎 

Branin 𝟐𝑫 RR 𝟐𝟎 % 𝟐𝟎 ± 𝟎 𝟐𝟎 ± 𝟏𝟐𝟗 𝟐𝟎 ± 𝟎 𝟐𝟎 ± 𝟏𝟒𝟔 𝟐𝟎 ± 𝟏𝟎𝟑 𝟐𝟎 ± 𝟏𝟒𝟔 𝟏𝟎𝟔 ± 𝟎 

Branin 𝟐𝑫 RC 𝟓 % 𝟏 ± 𝟎 𝟏 ± 𝟓𝟐 𝟑 ± 𝟕 𝟏 ± 𝟓𝟏 𝟐 ± 𝟒𝟑 𝟐 ± 𝟓𝟐 𝟏𝟐 ± 𝟎 

Branin 𝟐𝑫 RC 𝟏𝟎 % 𝟏 ± 𝟏 𝟐 ± 𝟓𝟒 𝟒 ± 𝟔 𝟐 ± 𝟓𝟒 𝟐 ± 𝟒𝟓 𝟐 ± 𝟓𝟒 𝟏𝟑 ± 𝟎 

Branin 𝟐𝑫 RC 𝟐𝟎 % 𝟑 ± 𝟑 𝟒 ± 𝟓𝟗 𝟔 ± 𝟒 𝟒 ± 𝟒𝟓 𝟑 ± 𝟒𝟖 𝟒 ± 𝟓𝟗 𝟏𝟓 ± 𝟎 

Ackley 𝟓𝑫 RR 𝟓 % 𝟏𝟔 ± 𝟏 𝟏𝟔 ± 𝟏 𝟏𝟐 ± 𝟏 𝟏𝟕 ± 𝟏 𝟏𝟐 ± 𝟐 𝟏𝟕 ± 𝟏 𝟐𝟐 ± 𝟎 

Ackley 𝟓𝑫 RR 𝟏𝟎 % 𝟏𝟒 ± 𝟏 𝟏𝟔 ± 𝟏 𝟐𝟎 ± 𝟎 𝟏𝟔 ± 𝟏 𝟏𝟒 ± 𝟏 𝟏𝟔 ± 𝟏 𝟐𝟐 ± 𝟎 

Ackley 𝟓𝑫 RR 𝟐𝟎 % 𝟏𝟔 ± 𝟏 𝟏𝟖 ± 𝟏 𝟐𝟏 ± 𝟎 𝟏𝟖 ± 𝟏 𝟏𝟒 ± 𝟏 𝟏𝟖 ± 𝟏 𝟐𝟐 ± 𝟎 

Ackley 𝟓𝑫 RC 𝟓 % 𝟓 ± 𝟓 𝟏𝟗 ± 𝟏 𝟏𝟐 ± 𝟐 𝟏𝟖 ± 𝟏 𝟏𝟒 ± 𝟐 𝟏𝟗 ± 𝟏 𝟐𝟐 ± 𝟎 

Table VI. Final optimal function values for all thirty-six cases by the original model and all the 

surrogate models. The function values in the table represent the mode of 100 runs alongside the 

standard deviation, both rounded off to nearest integer representation. In each case, the surrogate 

models with most optimal function values are highlighted. 

 



 

 

 

 

 

Ackley 𝟓𝑫 RC 𝟏𝟎 % 𝟕 ± 𝟓 𝟏𝟗 ± 𝟏 𝟗 ± 𝟐 𝟏𝟖 ± 𝟏 𝟏𝟒 ± 𝟐 𝟏𝟗 ± 𝟏 𝟐𝟐 ± 𝟎 

Ackley 𝟓𝑫 RC 𝟐𝟎 % 𝟏𝟎 ± 𝟒 𝟏𝟗 ± 𝟏 𝟏𝟔 ± 𝟏 𝟐𝟐 ± 𝟑 𝟏𝟓 ± 𝟐 𝟏𝟗 ± 𝟏 𝟐𝟐 ± 𝟎 

Sphere 𝟓𝑫 RR 𝟓 % 𝟎 ± 𝟎 𝟎 ± 𝟕 𝟎 ± 𝟎 𝟏 ± 𝟖 𝟎 ± 𝟏𝟐 𝟕 ± 𝟏𝟗 𝟎 ± 𝟎 

Sphere 𝟓𝑫 RR 𝟏𝟎 % 𝟎 ± 𝟎 𝟎 ± 𝟖 𝟎 ± 𝟎 𝟎 ± 𝟕 𝟏 ± 𝟏𝟐 𝟓 ± 𝟐𝟐 𝟎 ± 𝟎 

Sphere 𝟓𝑫 RR 𝟐𝟎 % 𝟎 ± 𝟎 𝟎 ± 𝟗 𝟎 ± 𝟎 𝟏 ± 𝟏𝟔 𝟏 ± 𝟏𝟐 𝟖 ± 𝟑1 𝟎 ± 𝟎 

Sphere 𝟓𝑫 RC 𝟓 % 𝟎 ± 𝟎 𝟓 ± 𝟏𝟔 𝟎 ± 𝟎 𝟗 ± 𝟏𝟓 𝟏 ± 𝟕 𝟗 ± 𝟏𝟖 𝟎 ± 𝟎 

Sphere 𝟓𝑫 RC 𝟏𝟎 % 𝟎 ± 𝟎 𝟗 ± 𝟏𝟔 𝟎 ± 𝟎 𝟕 ± 𝟏𝟕 𝟏 ± 𝟖 𝟏𝟎 ± 𝟏𝟖 𝟎 ± 𝟎 

Sphere 𝟓𝑫 RC 𝟐𝟎 % 𝟏 ± 𝟎 𝟏𝟎 ± 𝟏𝟖 𝟏 ± 𝟎 𝟏𝟎 ± 𝟏𝟕 𝟐 ± 𝟏𝟏 𝟏𝟏 ± 𝟏𝟖 𝟏 ± 𝟎 

Ackley 𝟏𝟎𝑫 RR 𝟓 % 𝟏𝟖 ± 𝟎 𝟏𝟗 ± 𝟎 𝟖 ± 𝟎 𝟏𝟗 ± 𝟎 𝟏𝟗 ± 𝟎 𝟏𝟗 ± 𝟎 𝟖 ± 𝟎 

Ackley 𝟏𝟎𝑫 RR 𝟏𝟎 % 𝟏𝟖 ± 𝟎 𝟐𝟎 ± 𝟎 𝟖 ± 𝟎 𝟏𝟗 ± 𝟎 𝟏𝟓 ± 𝟏 𝟐𝟎 ± 𝟎 𝟕 ± 𝟎 

Ackley 𝟏𝟎𝑫 RR 𝟐𝟎 % 𝟏𝟗 ± 𝟎 𝟐𝟎 ± 𝟎 𝟏𝟐 ± 𝟎 𝟏𝟗 ± 𝟎 𝟏𝟕 ± 𝟏 𝟐𝟎 ± 𝟎 𝟐𝟐 ± 𝟎 

Ackley 𝟏𝟎𝑫 RC 𝟓 % 𝟓 ± 𝟓 𝟐𝟎 ± 𝟎 𝟖 ± 𝟎 𝟐𝟎 ± 𝟎 𝟐𝟎 ± 𝟎 𝟐𝟎 ± 𝟎 𝟓 ± 𝟎 

Ackley 𝟏𝟎𝑫 RC 𝟏𝟎 % 𝟕 ± 𝟓 𝟐𝟎 ± 𝟎 𝟗 ± 𝟎 𝟐𝟎 ± 𝟎 𝟐𝟎 ± 𝟎 𝟐𝟎 ± 𝟎 𝟕 ± 𝟎 

Ackley 𝟏𝟎𝑫 RC 𝟐𝟎 % 𝟏𝟎 ± 𝟓 𝟐𝟎 ± 𝟎 𝟏𝟏 ± 𝟎 𝟐𝟏 ± 𝟎 𝟐𝟏 ± 𝟎 𝟐𝟏 ± 𝟎 𝟏𝟎 ± 𝟎 

Rastrigin 

𝟏𝟎𝑫 

RR 𝟓 % 𝟗𝟏𝟖 ± 𝟐𝟕 𝟏𝟎𝟐𝟏 ± 𝟑𝟑 𝟏𝟎𝟏𝟑 ± 𝟎 𝟏𝟏𝟓𝟒 ± 𝟐𝟖 𝟗𝟕𝟓 ± 𝟒𝟏 𝟏𝟎𝟐𝟎 ± 𝟑𝟒 𝟗𝟗𝟑 ± 𝟎 

Rastrigin 

𝟏𝟎𝑫 

RR 𝟏𝟎 % 𝟗𝟐𝟑 ± 𝟐𝟖 𝟏𝟎𝟐𝟒 ± 𝟒𝟎 𝟗𝟖𝟕 ± 𝟎 𝟏𝟎𝟖𝟑 ± 𝟐𝟎 𝟗𝟖𝟓 ± 𝟑1 𝟏𝟎𝟐𝟒 ± 𝟑𝟖 𝟗𝟗𝟔 ± 𝟎 

Rastrigin 

𝟏𝟎𝑫 

RR 𝟐𝟎 % 𝟗𝟏𝟗 ± 𝟒𝟎 𝟏𝟎𝟑𝟖 ± 𝟓𝟒 𝟗𝟓𝟐 ± 𝟎 𝟏𝟎𝟑𝟑 ± 𝟓𝟎 𝟗𝟕𝟓 ± 𝟑𝟏 𝟏𝟎𝟒𝟕 ± 𝟓𝟑 𝟏𝟎𝟑𝟐 ± 𝟎 

Rastrigin 

𝟏𝟎𝑫 

RC 𝟓 % 𝟗𝟒𝟔 ± 𝟐𝟑 𝟏𝟎𝟐𝟎 ± 𝟐𝟗 𝟏𝟎𝟑𝟒 ± 𝟎 𝟏𝟏𝟔𝟒 ± 𝟏𝟒 𝟗𝟖𝟖 ± 𝟑1 𝟏𝟎𝟐𝟎 ± 𝟐𝟗 𝟗𝟔𝟏 ± 𝟎 

Rastrigin 

𝟏𝟎𝑫 

RC 𝟏𝟎 % 𝟗𝟗𝟓 ± 𝟗 𝟏𝟎𝟒𝟐 ± 𝟐𝟔 𝟏𝟎𝟎𝟓 ± 𝟎 𝟏𝟏𝟑𝟒 ± 𝟐𝟕 𝟏𝟎𝟏𝟑 ± 𝟐𝟎 𝟏𝟎𝟒𝟏 ± 𝟐𝟕 𝟗𝟗𝟔 ± 𝟎 

Rastrigin 

𝟏𝟎𝑫 

RC 𝟐𝟎 % 𝟏𝟎𝟎𝟑 ± 𝟏𝟐 𝟏𝟎𝟓𝟖 ± 𝟐𝟒 𝟏𝟎𝟒𝟓 ± 𝟎 𝟏𝟎𝟒𝟏 ± 𝟐𝟑 𝟏𝟎𝟐𝟑 ± 𝟐𝟓 𝟏𝟎𝟔𝟒 ± 𝟐𝟓 𝟏𝟎𝟓𝟓 ± 𝟎 

 



 

 

 

 

 

 
 

 

 

Figure 3.  Modeling accuracy of surrogates on Ackley 2D with three noise 

levels, two robustness strategies and ten training sample sizes. 

Figure 4.  Modeling accuracy of surrogates on Branin 2𝐷 with three 

noise levels, two robustness strategies and ten training sample sizes. 



 

 

 

 

 

 

 
 

 
 

Figure 5.  Modeling accuracy of surrogates on Ackley 5𝐷 with three 

noise levels, two robustness strategies and ten training sample sizes. 

Figure 6.  Modeling accuracy of surrogates on Sphere 5𝐷 with three 

noise levels, two robustness strategies and ten training sample sizes. 



 

 

 

 

 

 
 

 

Figure 7.  Modeling accuracy of surrogates on Ackley 10𝐷 with three 

noise levels, two robustness strategies and ten training sample sizes. 

Figure 8.  Modeling accuracy of surrogates on Rastrigin 10𝐷 with three 

noise levels, two robustness strategies and ten training sample sizes. 



 

 

 

 

 

5. Summary & Outlook 

 
This deliverable report focuses on the scientific achievements regarding the work package 2.3 in 

ECOLE, namely, robustness & uncertainty modelling in experience-based optimization. The 

importance of handling uncertainty and/or noise within the context of design optimization is 

palpable since uncertainty and/or noise can greatly determine the practical applicability of the 

optimal solution(s). Furthermore, uncertainty and/or noise can significantly affect the objective 

landscape. Sec. 2 of this report provides an overview on different sources of uncertainty and/or 

noise within the context of black-box design optimization. It further delineates three common ways 

to mathematically model the uncertainties and/or noise. The final part of Sec. 2 shares different 

scenarios of optimization under uncertainty, and highlights the cases which are most relevant to 

the project. Sec. 3 of this report focuses on the RCA, in particular, the robustness based on the 

minimax principle and the composite robustness. Sec. 4 focuses on SARO, and shares the 

experimental design and key results from our research in ECOLE.  

 

Major findings in Sec. 4 suggest the usefulness of surrogate modeling for robust design 

optimization. This is due to the fact that in 8/36 cases reported in Table VI, at least one surrogate 

achieves the optimal function value − based on the mode of 100 runs and if tied, based on standard 

deviation. Additionally, in 12/36 cases, at least one surrogate finds a better local optimum of the 

function following the similar evaluation criteria. In the majority of the remaining cases, at least 

one surrogate achieves suboptimal function. From the findings in Sec. 4, in particular Tables IV, 

V and Figs. (3-8), we argue that Kriging, SVMs and ELN provide a high modeling accuracy even 

with limited training data in most cases. Additionally, these techniques find optimal or suboptimal 

function values in most cases as presented in Table VI. Our findings are a further validation of 

Kriging and Polynomial models as two of the most reliable modeling techniques. Our research 

also suggests SVMs as a promising and competitive modeling technique since it provides the 

highest modeling accuracy in most cases, i.e., lowest average RMAE in 14/36 as presented in 

Table V, and proposes suboptimal solutions in most 𝟓𝑫 and 𝟏𝟎𝑫 cases as illustrated in Table VI. 

 

Future investigations are necessary to validate these findings on more complex problems such as 

the ones with multiple objectives, higher dimensionalities, asymmetric noise and real-world 

engineering case studies, e.g., crashworthiness, target shape design optimization. Furthermore, it 

is important to model multiplicative noise and define other robustness strategies characterizing the 

practical nature of RO. An important and fundamental scientific question to answer is the cost of 

robustness. Similarly, a natural extension of the famous Efficient Global Optimization (EGO) 

framework to the cases with uncertainty and/or noise is desirable. Finally, there is a dire need to 

produce tutorial based cohesive work for designers to adopt the surrogate models in practical cases 

of RO.  
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