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Acknowledgment 

 

This deliverable was initially named "Constrained and Multi-Criteria optimization". However, 

deliverable 1.2, "Multi-Criteria Optimization Focusing On Learning For Adaptive Feature Selection 

And Constraints Prediction" has been designed to include this topic. Due to the fact that the model 

selection and hyperparameter optimization problem are common problems for all research lines in 

our project, we changed this deliverable topic into "Integrated model selection and hyperparameter 

optimization". 

Executive Summary 

 

This document provides a concise report on the research invested and the scientific contributions 

made regarding the work package 2.2 in ECOLE. This work package deals with the model selection 

and hyperparameter optimization problems, which are commonly faced in most research lines in the 

ECOLE project. A comprehensive computational investigation into three well-known optimization 

approaches (i.e., Bayesian optimization, grid search, and random search) in the context of automatic 

model selection and hyperparameter optimization, to find out which approach yields the best 

performance. In this comparison, the findings from ECOLE demonstrate that Bayesian optimization 

always achieves the highest performance in all tested cases. In fact, it outperforms Random search 

and Grid search on the default hyperparameters on 91 % and 89 % of the tested datasets, respectively, 

while equal performance is found on the remaining cases. Additionally, compared to the most recent 

work in the literature (in Section 5), it can improve by 7.3% in terms of the geometric mean (GM) 

performance measure across all data sets, with 95% less function evaluations.   

 

Major Achievements 

Major scientific achievements regarding the work package 2.2 are presented below. In particular, 

short answers to some of the most important research questions are described: 

 

Research Questions Discussion 

Can hyperparameter optimization improve the 

performance of machine learning problems? 

For the imbalanced classification problem, 

our finding indicates that Bayesian 

optimization and Random search 

outperform grid search on the default 

hyperparameter approach in 39 and 30 of 

44 tested cases, respectively (Section 5). 

For other machine learning problems (e.g., 

regression, other classification problems), 

further research has to be invested. 

What is the most efficient optimization approach 

to deal with the model selection and 

hyperparameter optimization problems? 

Our results demonstrate that Bayesian 

optimization is the best approach for the 

combined model selection and 

hyperparameter optimization (Section 2 and 

Section 5).  



 

 

 

 

 

1. Introduction 

The research aims of ECOLE include shortening the product cycle, reducing the resource 

consumption during the complete process, and creating more balanced and innovative products. 

Instead of just developing technologies to solve a given optimization problem, it will take a bold step 

forward and optimize automatically across problems. Referring to knowledge, skill, and practice 

derived from problem-solving processes in time, the experience of optimizing one product or process 

will be learned and transferred automatically to solve other optimization problems. Work package 

2.2 focuses on model selection and hyperparameter optimization problems. This WP issue is 

important because: In the context of applying the existing research achievements of ECOLE in 

solving real-world problems efficiently, it is needed to automatically optimize the optimization 

problems based on the existing works and achievements of ECOLE with less human effort. 

 

This report summarizes the work and research invested in work package 2.2, which deals with the 

model selection and hyperparameter optimization problems. In this report, therefore, we summarize 

the following scientific findings and research outcomes of the work package 2.2: 

 

• A literature study on the combination of model selection and hyperparameter optimization 

problems is summarized in Section 2. Two commonly used approaches, i.e., sequentially and 

integrated approaches, are delineated. 

• A literature study on the presence of the hyperparameter optimization problem is summarized 

in Section 3. We concisely summarize the state-of-the-art methodologies based on the existing 

work [1, 2, 3, 4, 5, 6]. 

• A literature study on the combined model/algorithm selection and hyperparameter 

optimization (CASH) is provided in Section 4. We introduce the CASH approach based on 

the existing works [7, 8, 9, 10, 11, 12]. 

• An empirical investigation of the CASH optimization is given in Section 5. Our contribution 

in this section is to solve the CASH problem efficiently for the class imbalance classification 

problem. 

The following publication of the ECOLE project is contributing to this report: 

 

• D. A. Nguyen, J. Kong, H. Wang, S. Menzel, B. Sendhoff, A. V. Kononova, and T. Bäck, 

"Comparison of Automated CASH Optimization Approaches for Class Imbalance Problems", 

2021, to appear. 

  



 

 

 

 

 

2. Background 

In the context of applying machine learning in many real-world applications, researchers have to 

make several high-level decisions: choose a machine learning model such as a learning algorithm 

(i.e., classification or regression algorithm), different preprocessing techniques (data preprocessing, 

feature preprocessing), and select a well-suited configuration to their problem, as depicted in Figure 

1. This kind of task is typically divided into two separate problems: algorithm selection and 

hyperparameter optimization. 

 

 
Figure 1. A typical machine learning workflow 

 

Usually, these tasks are addressed separately and sequentially, where the practitioner can choose to 

handle either task first. Commonly, practitioners proceed by tuning the hyperparameters for each 

modeling algorithm separately and then choosing the best model. However, this approach is 

considerably more expensive than the combined approach due to the number of models to optimize.  

Alternatively, the practitioner can select a suitable model by training all models with their default 

hyperparameters or based on their experience, and then further tune the hyperparameters only for the 

best model. Nevertheless, this approach might get stuck in a local optimum of the initially chosen 

model, based on the default hyperparameter setting. 

 

On the other hand, instead of sequentially solving these problems, the integrated approach aims to 

optimize both problems at the same time by combining them into a single problem. That is commonly 

referred to as the Combined Algorithm Selection and Hyperparameter optimization (CASH) or Full 

Model Selection (FMS) [13, 7] approach. Approaches for tackling the CASH problem have been 

widely proposed in the machine learning domain, especially in the context of automated machine 

learning (AutoML), e.g., Auto-Weka [8, 7], Auto-Sklearn [9, 10], TPOT [12], HyperOpt-Sklearn 

[11]. In addition, [14] demonstrated that the CASH approach is competitive with the sequential 

approach and requires less computational effort. Hence, in this report, we introduce CASH in the 

context of optimizing the machine learning pipeline for the classification problem.  

  



 

 

 

 

 

3. Hyperparameter optimization 

Hyperparameter optimization (HPO) has become increasingly important in the machine learning and 

optimization community. In the context of optimization, HPO is generally viewed as a black-box 

optimization problem, which aims to find the global optimum x of hyperparameters, with respect to 

a loss function f, namely, 

 

𝑥∗ = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝑥∈𝜒

𝑓 (𝑥), 

where χ stands for the search space of hyperparameters. In the following paragraphs, we briefly 

introduce two state-of-the-art HPO algorithms: Random search and Bayesian optimization.  

 

3.1. Random search and Grid search 

 

Grid search is the most basic HPO algorithm. We are given a set of hyperparameters, each of which 

is defined over a (finite) set of values. By enumerating all combinations of these sets, we have a list 

of all candidates. Grid search evaluates all of these candidates and chooses the best configuration 

among them. The number of function evaluations is precisely the number of configurations. Usually, 

the practitioner gives a limited computational budget, i.e., number of function evaluations, for HPO, 

which is typically much smaller than the number of possible configurations to evaluate - such setup 

is not fully compatible with grid search. Unlike grid search, which assesses all configurations, random 

search [1] evaluates only a subset of configurations at random until the given budget runs out and 

returns the best of the sampled configurations. 

 

3.2. Bayesian optimization 

 

As the HPO task is typically time-consuming, it is preferable to devise/choose an optimizer that would 

deliver a good hyperparameter setting with a relatively smaller computational budget. Built upon 

surrogate models, Bayesian Optimization (BO, also called Sequential Model-Based Optimization 

(SMBO)) [15] is designed for this scenario. Generally speaking, BO iteratively updates a surrogate 

model M that aims to learn the probability distribution of the loss value conditioned on 

hyperparameter x, i.e., P(f|x), from the historical information - the evaluated hyperparameter and the 

corresponding loss values. We subsequently choose a new candidate hyperparameter by optimizing 

the so-called acquisition function (e.g., Expected Improvement), which is defined over the surrogate 

model M and often balances the exploration and exploitation of the search. Many variants have been 

proposed for BO, including the Sequential Model-based Algorithm Configuration (SMAC) [5], 

Sequential Parameter Optimisation (SPO) [2], Mixed-Integer Parallel Efficient Global Optimization 

(MIPEGO) [6], and Tree-structured Parzen Estimator (TPE) [3, 16]. They differ mostly in the initial 

sampling method, the probabilistic model, and the acquisition function. Common choices for the 

probabilistic model are Random Forests (RF) [17], Gaussian Process regression (GPR) [18], and TPE. 

As for the acquisition function, Expected Improvement (EI) [19], Probability of Improvement (PI) 

[20], and Upper Confidence Bound (UCB) [21] are more frequently applied among many other 

alternatives. Determining the sample size and strategy for the initial sampling is still a daunting task, 

and the well-known Latin Hypercube Sampling (LHS) [22] strategy is generally perceived as a 



 

 

 

 

 

statistically more robust option, compared to others like simple random sampling and random 

sequences of low-discrepancies. The schematic procedure of SMBO is depicted in Figure 2. The 

procedure starts from the initialization step: a set of configurations is sampled and evaluated with the 

objective function, then the configurations and their corresponding loss values are used to build a 

probabilistic model. Next, based on optimizing the chosen acquisition function, a new configuration 

is generated and evaluated by the objective function. Finally, the new tuple is added to the historical 

tuning data (samples) for the new loop. 

 

 
Figure 2. Schematic procedure of Bayesian optimization.  

  



 

 

 

 

 

4. The combined algorithm selection and hyperparameter optimization problem 

The CASH problem was defined by Thornton et al. in Auto-Weka [7], an automated machine learning 

framework, where it aims to identify the best machine learning model (e.g., preprocessing techniques, 

classification/regression algorithm) and their hyperparameters that minimize the loss value of an 

arbitrary real-valued objective function f. 

 

Given a set of algorithms 𝒜 = {𝐴1, … , 𝐴𝑛} and their hyperparameter spaces χ = {𝜒1, … , 𝜒𝑛}, let 

𝒟𝑡𝑟𝑎𝑖𝑛
(𝑗)

 and 𝒟𝑣𝑎𝑙𝑖𝑑
(𝑗)

, for 𝑗 = 1, … , 𝑘, denote training and validation sets, generated by applying k-fold 

cross-validation on dataset 𝒟. Then the CASH problem is defined as: 

𝐴∗, 𝑥∗ = arg min
𝐴(𝑖)∈𝒜,𝑥∈𝜒(𝑖)

1

𝑘
∑ 𝑓(𝐴𝑥

(𝑖)
, 𝒟𝑡𝑟𝑎𝑖𝑛

(𝑗)
, 𝒟𝑣𝑎𝑙𝑖𝑑

(𝑗)
).

𝑘

𝑗=1

 

Here, 𝑓(Ax
(i), 𝒟𝑡𝑟𝑎𝑖𝑛

(𝑗)
, 𝒟𝑣𝑎𝑙𝑖𝑑

(𝑗)
) denote the loss achieved by the learning algorithm A(𝑖) and its 

corresponding hyperparameters 𝑥 ∈ χ(𝑖) when trained and evaluated on 𝒟𝑡𝑟𝑎𝑖𝑛
(𝑗)

, 𝒟𝑣𝑎𝑙𝑖𝑑
(𝑗)

. 

Note that most HPO methods in practice can handle the CASH problem by modeling the algorithms' 

choice as a categorical hyperparameter. Each algorithm is mapped to its locally dependent 

hyperparameters by the so-called conditional parameter. 

  



 

 

 

 

 

5. Empirical comparison of CASH optimization for the class imbalance 

problem. 

5.1. Class imbalance problem. 

 

Due to the fact that class imbalance is present in many real-world applications, the imbalanced 

classification has brought along much attention from researchers and practitioners. In the 

manufacturing industry, fault detection on the products is a typical example of the imbalanced 

classification problem, since most products are correctly produced, and only a few products are faulty 

ones [23]. In software defect prediction, the highly imbalanced nature between the defect and non-

defect modules cannot be neglected. Several studies have shown that proper class imbalance learning 

methods can benefit software defect prediction and improve the performance of detecting possible 

failures [24, 25]. Due to recent developments in data storage and management, it is possible for 

practitioners from industry and engineering to collect a large amount of data in order to extract 

knowledge and acquire hidden insights. An application example may be illustrated in the field of 

computational design optimization [26], where product parameters are modified to generate digital 

prototypes, and the performances are usually evaluated through numerical simulations, which often 

require minutes to hours of computation time. Here, some parameter variations (minority number of 

designs) would result in effective and producible geometric shapes, but the given constraints are 

violated in the final step of optimization. In this case, performing proper imbalanced classification 

algorithms on the design parameters could save computation time. A detailed discussion of the class 

imbalance classification problem is provided in another ECOLE deliverable, namely the 3.1- Semi-

supervised learning for class imbalance problems. 

 

The resampling techniques are designed to handle the class imbalance scenario by producing 

balanced data sets. The resampling algorithms used in our experiments can be arranged into three 

groups, namely "over resampling" (7 techniques [27, 28, 29, 30, 31, 32]), "under resampling" (11 

techniques [33, 34, 35, 36, 37, 38, 39, 40, 41, 42]), and "combine resampling" (2 techniques [43, 44]), 

which are implemented in the python package imbalanced-learn1 [45]. The under-sampling 

technique balances the class distribution by removing samples from the majority class, while 

oversampling balances class distribution by adding more copies of the minority class samples. The 

combined resampling indicates a combination of both over-resampling and under-resampling 

techniques. The list of these resampling techniques and their hyperparameters is provided in Table 

II. Their detailed information is provided in Sections 2, 3.1, 3.2 of deliverable 3.1. 

 

In the class imbalance domain, it is widely known that accuracy rate is a deceptive estimate of 

performance [46, 47] . Instead of accuracy rate, other metrics such as the area under the receiver 

operating characteristic (ROC) curve (AUC), F-measure (FM), or geometric mean (GM) are 

commonly used to measure performance [48]. For comparison with previous studies [49, 50], we 

use GM as the performance evaluation metric, i.e.: 

 

GM =  √TPrate ∙ TNrate , 

                                                 
1 https://github.com/scikit-learn-contrib/imbalanced-learn (version 0.7.0) 

https://github.com/scikit-learn-contrib/imbalanced-learn


 

 

 

 

 

where TPrate =  
TP

TP+FN
  and TNrate =  

TN

FP+TN
  are the true positive and true negative rate, respectively, 

with TP, TN, FN and FP denoting the number of true positive, true negative, false negative and false 

positive samples. 

 

5.1.1. Imbalanced datasets 

Technically, any dataset with an unequal class distribution is imbalanced, in which the number of 

samples of one class is much lower than the one of the other classes. Here, the one or more 

underrepresented classes are called minority class(es), and the other class(es) are called majority 

classes. However, only datasets with a significantly skewed distribution are regarded to be 

imbalanced in the imbalanced learning domain [23]. The 44 benchmark imbalanced datasets from the 

KEEL collection [51] are given in Table I, which includes the number of negative and positive 

samples, as well as their imbalance ratio (IR),i.e., the ratio of the number of majority class samples 

to the number of minority class samples.  

 

Table I. Imbalanced data used. The number of positive and negative classes and the imbalance 

ratio (IR) of the KEEL Datasets are arranged by IR value 

Dataset # Negative # Positive #Attributes #IR 

glass1 138 76 9 1.82 

ecoli-0_vs_1 77 143 7 1.86 

wisconsin 444 239 9 1.86 

pima 500 268 8 1.87 

iris0 100 50 4 2 

glass0 144 70 9 2.06 

yeast1 1055 429 8 2.46 

haberman 225 81 3 2.78 

vehicle2 628 218 18 2.88 

vehicle1 629 217 18 2.9 

vehicle3 634 212 18 2.99 

glass-0-1-2-3_vs_4-5-6 163 51 9 3.2 

vehicle0 647 199 18 3.25 

ecoli1 259 77 7 3.36 

new-thyroid1 180 35 5 5.14 

new-thyroid2 180 35 5 5.14 

ecoli2 284 52 7 5.46 

segment0 1979 329 19 6.02 

glass6 185 29 9 6.38 

yeast3 1321 163 8 8.1 

ecoli3 301 35 7 8.6 



 

 

 

 

 

Dataset # Negative # Positive #Attributes #IR 

page-blocks0 4913 559 10 8.79 

yeast-2_vs_4 463 51 8 9.08 

yeast-0-5-6-7-9_vs_4 477 51 8 9.35 

vowel0 898 90 13 9.98 

glass-0-1-6_vs_2 175 17 9 10.29 

glass2 197 17 9 11.59 

shuttle-c0-vs-c4 1706 123 9 13.87 

yeast-1_vs_7 429 30 7 14.3 

glass4 201 13 9 15.46 

ecoli4 316 20 7 15.8 

page-blocks-1-3_vs_4 444 28 10 15.86 

abalone9-18 689 42 8 16.4 

glass-0-1-6_vs_5 175 9 9 19.44 

shuttle-c2-vs-c4 123 6 9 20.5 

yeast-1-4-5-8_vs_7 663 30 8 22.1 

glass5 205 9 9 22.78 

yeast-2_vs_8 462 20 8 23.1 

yeast4 1433 51 8 28.1 

yeast-1-2-8-9_vs_7 917 30 8 30.57 

yeast5 1440 44 8 32.73 

ecoli-0-1-3-7_vs_2-6 274 7 7 39.14 

yeast6 1449 35 8 41.4 

abalone19 4142 32 8 129.44 

 

5.2. Optimization methods 

 

In the ECOLE project, we tested the random search and a Bayesian optimization variant, so-called 

TPE, which are implemented in the Python package HyperOpt2  (version 0.2.4) as HPO algorithms.  

 

The HPO algorithms are deployed to optimize the hyperparameters of five classification algorithms, 

i.e., Support Vector Machines (SVM), Random Forest (RF), K-Nearest Neighbors (KNN), Decision 

Tree (DT), and Logistic Regression (LR), which are described in Table III, and 20 resampling 

techniques plus one option not to use resampling technique, leading up to 64 hyperparameters in total 

(detailed information on these hyperparameters are provided in Table II).  Moreover, to study the 

HPO algorithms' effectiveness, we evaluated all possible combinations of classification and 

resampling algorithms, using the default hyperparameter settings for each algorithm. On each dataset, 

the combination with the highest GM is reported. Thus, there are 5 x 21 = 105 combinations in total. 

Evaluating these combinations one by one is named "Grid-Def" here. 

                                                 
2 https://github.com/hyperopt/hyperopt 



 

 

 

 

 

 

 
Figure 3. Flowchart of the experimental setup. 

 

For clarification, the workflow of the experimental procedure is provided in Figure 3, which consists 

of the following two phases: 

 

- Preprocessing: For one dataset input is encoded by Label encoder3 to encode any categorical 

data to a number for the input dataset. Then the encoded data is preprocessed by Standard 

Scaler3 to have zero mean and a standard deviation of one. Next, Stratified k-fold cross-

validation using k =5 is used. 

- Hyperparameter optimization: All parameters of HPO are initialized, taking values from the 

provided input, including search space χ, objective function in the grey circle, and k folds of 

the examined dataset. Then, the algorithm optimizes the search space χ until the number of 

function evaluations reaches 500. At each iteration, HPO generates a hyperparameter setting 

𝑥 ∈  𝜒, which includes the selected resampler and classifier, with the selected resampler being 

applied to each fold to make it balanced and applied the classifier to the balanced fold. The 

hyperparameter optimization process in the gray circle is based on the geometric mean. 

 

 

Table II. Hyperparameters of resampling techniques 

 

Algorithm Hyperparameter Range 

Over-Resampling 

SMOTE 

k_neighbors [1, 10] 

sampling_strategy default 

BorderlineSMOTE 

k_neighbors   [1, 10] 

m_neighbors [1, 10] 

sampling_strategy default 

kind [borderline1, borderline2] 

SMOTENC sampling_strategy default 

                                                 
3 Label encoder, Standard scaler and Stratified k-fold cross-validation are implemented in the python library scikit-learn 

(version 0.23.2) 



 

 

 

 

 

Algorithm Hyperparameter Range 

k_neighbors [1, 10] 

SVMSMOTE 

sampling_strategy default 

k_neighbors   [1, 10] 

m_neighbors [1, 10] 

out_step [0.0, 1.0] 

KMeansSMOTE 

sampling_strategy default 

k_neighbors   [1, 10] 

cluster_balance_threshold [1e-2, 1] 

ADASYN 

sampling_strategy default 

n_neighbors   [1, 10] 

 

Combine-Resampling 

SMOTENN sampling_strategy default 

SMOTETomek sampling_strategy default 

 

Under-Resampling 

CondensedNearestNeighbour 

n_neighbors   [1, 50] 

sampling_strategy default 

n_seeds_S [1, 50] 

EditedNearestNeighbours 

n_neighbors   [1, 20] 

sampling_strategy default 

return_indices [True, False] 

kind_sel [all, mode] 

RepeatedEditedNearestNeighbours 

sampling_strategy default 

kind_sel [all, mode] 

n_neighbors   [1, 20] 

AllKNN 

n_neighbors   [1, 20] 

sampling_strategy default 

kind_sel [all, mode] 

allow_minority [True, False] 

InstanceHardnessThreshold 

estimator 

None, knn, decision-tree, 

adaboost, gradient-boosting, 

linear-svm 

sampling_strategy default 

cv [2, 10] 

OneSidedSelection 

 

sampling_strategy default 

n_neighbors   [1, 20] 

n_seeds_S   [1, 20] 

RandomUnderSampler 

sampling_strategy default 

replacement [True, False] 



 

 

 

 

 

Algorithm Hyperparameter Range 

TomekLinks sampling_strategy default 

NearMiss 

sampling_strategy default 

version [1,3] 

n_neighbors   [1, 20] 

n_neighbors _ver3 [1, 20] 

NeighbourhoodCleaningRule 

sampling_strategy default 

threshold_cleaning [0.0, 1.0] 

n_neighbors   [1, 20] 

ClusterCentroids 

sampling_strategy default 

estimator [KMeans, MiniBatchKMeans] 

voting [hard, soft] 

 

 

Table III. Hyperparameters of Classification algorithms 

Algorithm Hyperparameter Range 

Support Vector 

Machines (SVM) 

Max_iter 10000 

Cache_size 700 (Megabyte) 

probability [True, False] 

C [0.55,100] 

kernel [linear, rbf, poly, sigmoid] 

shrinking [true, false] 

gamma [auto, value, scale] 

gamma_value [3.1e-05,8] 

coef0 [-1.0, 1.0] 

degree [2, 5] 

tol [1e-05, 1e-01] 

Random Forest (RF) 

n_estimators [1,150] 

criterion [gini, entropy]  

max_features [1, sqrt, log2, None] 

min_samples_split [2, 20] 

min_samples_leaf [1, 20] 

bootstrap [True, False] 

class_weight [balanced, balanced_subsample, None] 

K-Nearest Neighbors 

(KNN) 

n_neighbors [1, 51] 

weights [uniform, distance] 

algorithm [auto, ball_tree, kd_tree, brute] 



 

 

 

 

 

Algorithm Hyperparameter Range 

p [0, 20] 

• p = 0 → metric = chebyshev 

• p = 1 →  metric = manhattan 

• p = 2 → metric = euclidean 

• p > 2 → metric = minkowski 

Decision Tree (DT) 

criterion [gini, entropy]  

max_depth [2, 20] 

max_features [1, sqrt, log2, None] 

min_samples_split [2, 20] 

min_samples_leaf [1, 20] 

Logistic Regression 

(LR) 

C [1, 150] 

criterion [0.55,100] 

tol [1e-05, 1e-01] 

l1_ratio [1e-09, 1] 

(penalty, solver) [(l1, liblinear), (l1, saga), (l2, lbfgs), 

(l2, newton-cg), (l2, liblinear), 

(l2, sag), (l2, saga), (elasticnet, saga), 

(none, newton-cg), (none, lbfgs), 

(none, sag), (none, saga)] 

 

Additionally, since the used algorithms, i.e., classifiers and resamplers, in the objective function are 

stochastic, we fixed ten random seeds for HPO, classifiers, and resamplers in 10 different runs to 

make the objective function deterministic, i.e., to assure the objective function always returns the 

same value for identical input values. 

 

5.3. Experimental Results 

 

The experimental results are presented in Table IV to illustrate the performance differences between 

the three integrated optimization approaches used, i.e., TPE, Random search (RS) and Grid-Def 

(Grid), and to compare them against Evolutionary Under-Sampling (EUS) methods [49]. In this table, 

our results are presented in the corresponding columns on the left side (not shaded). The results from 

[49] are presented on the right side (grey shaded) for EUS, EUS-windowing (EUSW), the clustering-

based surrogate model for EUS (EUSC), and the hybrid surrogate model for EUS (EUSHC). In both 

groups, the highest performance for each dataset is highlighted in bold.  In the experimental results, 

the methods performing significantly worse than the best according to the Wilcoxon signed-rank test 

with α= 0.05 are underlined. A value labeled with * indicates that the result obtained in ECOLE 

outperforms those from [49] for the corresponding dataset. Additionally, an extra column to the right 

summarizes the method that achieves the highest GM for the corresponding dataset. The results show 

the following findings: 

• HPO approaches exhibit better performance compared to the Grid-Def approach, which uses 

default hyperparameters. Moreover, according to the results of the Wilcoxon signed-rank test, 

TPE is always the best method found: it significantly outperforms the Grid-Def in 32/44 

datasets, while it significantly outperforms RS in 26/44 tested cases. 



 

 

 

 

 

• Overall, TPE shows the highest GM in most of the datasets, 41/44. Other compared methods 

win on different datasets, e.g., EUSC and EUS achieve the highest GM on "glass-0-1-2-

3_vs_4-5-6'' and "vowel0'', respectively. All approaches get the maximum GM on the dataset 

"iris0''. 

• Comparing ECOLE experimental results and the best results from [49], it can be concluded 

that TPE wins for 41/44 datasets, RS wins for 38/44 datasets, and Grid-Def wins for 37/44 

datasets. This is a high-impact result of ECOLE, since the number of function evaluations 

used in this experiment is much smaller than in [49]: 500 function evaluations for TPE and 

RS, 105 function evaluations for Grid-Def vs. 10000 function evaluations for each method in 

[49]. A possible explanation for this might be that [49]  employs a simple KNN rule with k=1 

as the mere classifier, while more complicated classification algorithms are used in the 

ECOLE. More precisely, according to our experimental results, KNN only wins in 11 % 

(TPE), 13 % (RS), and 9 % (Grid-Def) of all cases. 

Table IV. Average geometric mean (rounded to 4 decimals) over 10 repetitions for the 44 datasets, 

ordered by increasing IR value. 

 

Dataset IR 
Our experimental results 

Evolutionary algorithms – 

results from [49] Overall Winner  

TPE RS Grid EUS EUSW EUSC EUSHC 

glass1 1.82 *0.7989 0.7763 0.7793 0.7773 0.7010 0.7941 0.7367 TPE 

ecoli-0_vs_1 1.86 *0.9864 *0.9864 *0.9864 0.9583 0.9312 0.9581 0.9615 TPE  | RS | Grid 

wisconsin 1.86 *0.9814 *0.9807 *0.9788 0.9690 0.9652 0.9600 0.9590 TPE 

pima 1.87 *0.7711 *0.7651 *0.7599 0.6943 0.6749 0.6957 0.7145 TPE 

iris0 2  1  1   1            1            1            1             1  - 

glass0 2.06 *0.8749 *0.8588 *0.8719 0.8009 0.6176 0.8047 0.6595 TPE 

yeast1 2.46 *0.7324 *0.7304 *0.7183 0.6533 0.6501 0.6600 0.6600 TPE 

haberman 2.78 *0.7025 *0.6926 *0.6678 0.5475 0.5635 0.5521 0.5497 TPE 

vehicle2 2.88 *0.9915 *0.9874 *0.9895 0.9259 0.9175 0.9265 0.9173 TPE 

vehicle1 2.9 *0.8658 *0.8429 *0.8333 0.6729 0.6624 0.6512 0.6926 TPE 

vehicle3 2.99 *0.8482 *0.8231 *0.8108 0.7280 0.7142 0.7165 0.7204 TPE 

glass-0-1-2-3_vs_4-5-6 3.2 0.9559 0.9505 0.9483 0.9525 0.9385 0.9647 0.9546 EUSC 

vehicle0 3.25 *0.9863 *0.9809 *0.9766 0.9164 0.9027 0.9103 0.9016 TPE 

ecoli1 3.36 *0.9047 *0.8966 *0.8999 0.8634 0.8306 0.8554 0.8424 TPE 

new-thyroid1 5.14 *0.9969 *0.9966 *0.9944 0.9882 0.9809 0.9859 0.9653 TPE 

new-thyroid2 5.14 *0.9978 *0.9966 *0.9910 0.9865 0.9773 0.9831 0.9746 TPE 

ecoli2 5.46 *0.9361 *0.9337 *0.9361 0.9000 0.8663 0.9034 0.8772 TPE | Grid 

segment0 6.02 *0.9993 *0.9990 *0.9965 0.9881 0.9870 0.9876 0.9858 TPE 

glass6 6.38 *0.9524 *0.9516 *0.9381 0.8889 0.9071 0.9156 0.9054 TPE 

yeast3 8.1 *0.9428 *0.9395 *0.9290 0.8728 0.8740 0.8752 0.8550 TPE 

ecoli3 8.6 *0.9061 *0.9023 *0.9044 0.8348 0.8153 0.8500 0.8097 TPE 

page-blocks0 8.79 *0.9456 *0.9422 *0.9401 0.9117 0.9038 0.9096 0.9085 TPE 



 

 

 

 

 

Dataset IR 
Our experimental results 

Evolutionary algorithms – 

results from [49] Overall Winner  

TPE RS Grid EUS EUSW EUSC EUSHC 

yeast-2_vs_4 9.08 *0.9559 *0.9474 *0.9401 0.9042 0.8774 0.9156 0.8930 TPE 

yeast-0-5-6-7-9_vs_4 9.35 *0.8212 *0.8063 *0.7938 0.7685 0.7663 0.7901 0.7535 TPE 

vowel0 9.98 0.9581 0.9483 0.9427 0.9897 0.9719 0.9877 0.9831 EUS 

glass-0-1-6_vs_2 10.29 *0.8498 *0.8216 *0.7904 0.6383 0.6164 0.6651 0.5815 TPE 

glass2 11.59 *0.8516 *0.8271 *0.7903 0.7194 0.6525 0.7262 0.6173 TPE 

shuttle-c0-vs-c4 13.87  *1   *1  *1 0.9960 0.9968 0.9960 0.9960 TPE | RS | Grid 

yeast-1_vs_7 14.3 *0.8028 *0.7926 *0.7979 0.7176 0.7079 0.7068 0.6669 TPE 

glass4 15.46 *0.9323 *0.9244 *0.9318 0.8700 0.8513 0.8613 0.8531 TPE 

ecoli4 15.8 *0.9727 0.9551 0.9415 0.8984 0.9362 0.8857 0.9645 TPE 

page-blocks-1-3_vs_4 15.86 *0.9925 *0.9877 *0.9884 0.9674 0.9399 0.9471 0.9294 TPE 

abalone9-18 16.4 *0.8889 *0.8752 *0.8536 0.7269 0.6772 0.7224 0.6559 TPE 

glass-0-1-6_vs_5 19.44 *0.9567 *0.9530 0.9304 0.9214 0.9151 0.9160 0.9501 TPE 

shuttle-c2-vs-c4 20.5  *1  *1  *1  0.9577 0.6449 0.9414 0.7365 TPE | RS | Grid 

yeast-1-4-5-8_vs_7 22.1 *0.7035 *0.6874 *0.6650 0.6569 0.6088 0.6604 0.6149 TPE 

glass5 22.78 *0.9637 0.9555 0.9438 0.8105 0.9076 0.9600 0.9103 TPE 

yeast-2_vs_8 23.1 *0.8231 *0.8031 *0.7945 0.7931 0.7496 0.7656 0.7668 TPE 

yeast4 28.1 *0.8803 *0.8664 *0.8585 0.8050 0.7799 0.8288 0.7970 TPE 

yeast-1-2-8-9_vs_7 30.57 *0.7459 *0.7402 *0.7289 0.6721 0.6078 0.6704 0.6500 TPE 

yeast5 32.73 *0.9803 *0.9790 *0.9788 0.9634 0.9494 0.9455 0.9653 TPE 

ecoli-0-1-3-7_vs_2-6 39.14 *0.9095 *0.8770 *0.9091 0.6700 0.7048 0.6625 0.6865 TPE 

yeast6 41.4 *0.8972 *0.8905 *0.8840 0.8357 0.8080 0.8034 0.8031 TPE 

abalone19 129.44 *0.7967 *0.7942 *0.7579 0.6258 0.6061 0.7214 0.6556 TPE 

          

 

Figure 4 provides insights into the tuning behavior of these two approaches on the dataset "abalone9-

18". Two sub-figures show the observed GM values of TPE (top) and RS (bottom) over 500 function 

evaluations. In each sub-figure, the scatter plots show the sequence of observed values vs. the number 

of function evaluations, the red line shows the current best value, and the black vertical bars indicate 

the infeasible configurations where GM returns a zero if an invalid configuration is used. The stacked 

histogram plot next to the scatter plot shows the distribution of all observed values. Five last stacked 

histogram plots to the right indicate the distributions for each classification algorithms, namely SVM, 

RF, KNN, LR, and DT. In the Figure 4 we observe the following:  

 

• Configurations generated by TPE can avoid the undefined infeasible area better than RS. In 

this run, the number of errors occurring in the TPE and RS runs are 14 and 22, respectively. 

According to a summary over all datasets and repetitions, the number of infeasible 

configurations of TPE and RS are 4.4% and 5.9%, respectively. 



 

 

 

 

 

• Apart from zero values, the GM values of TPE are mostly in the range from 0.8 to 0.9, while 

the GM values of RS are distributed in the range from 0.6 to 0.7. This is because the TPE 

generates new configurations based on historical information so far, while RS does not. 

 

 
Figure 4. Illustration of the hyperparameter tuning process on dataset "abalone9-18". 

 

 
Figure 5. The resulting combination of classifier and resampler choices for an optimization process 

using TPE across 10 repetitions on 44 datasets. Figure best viewed in color. 



 

 

 

 

 

 

 

According to TPE's highest results, Figure 5 shows the final combination of choices of classification 

algorithms and resampling approaches once the optimization run is over. There is no dominant 

algorithm over many datasets in the plot, but different datasets benefit from different classification 

algorithms. For example, ''glass0'', ''yeast1'', ''yeast3'',  ''haberman'',  ''vehicle2'',  ''ecoli1'' and ''page-

blocks0'' achieve the best results with SVM, ''vehicle0'', ''vehicle1'', ''vehicle3'' with KNN, whereas 

''abalone9-18'' always results in LR. Besides, 98% of runs yield the best performance by using 

resampling techniques. Particularly, Over resampling, Under resampling, and Combine resampling 

obtain 182, 199, 50 wins over 44 x 10 = 440 runs. Additionally, no classifier/resampler combination 

is providing the best classification performance over all datasets. Specifically, RF and SVM obtain 

206 and 84 wins, while other algorithms (LR, KNN, DT) find the best performance in 73, 48, 29 runs, 

respectively. 

  



 

 

 

 

 

6. Summary and Outlook  

This deliverable report focuses on the research invested and scientific achievements regarding the 

work package 2.2. in ECOLE, namely, integrated model selection and hyperparameter optimization. 

Section 2 of this report highlights the common approaches for handling the model selection and 

hyperparameter optimization problem in the machine learning domain. Section 3 of this report shares 

an overview of three commonly used optimization methods: Grid search, Random search, and 

Bayesian optimization. Section 4 introduces the combined algorithm selection and hyperparameter 

optimization problem. Section 5 shares the experimental results and key results from our research. 

 

As these project results show, when compared to other approaches, Bayesian optimization (BO) 

produces the best results. In fact, BO outperforms Random search and Grid search on the default 

hyperparameters on 91 % and 89 % of the tested datasets, respectively, while equal performance is 

found on the remaining cases. Hence, we recommend using the BO approach for handling CASH 

optimization for class imbalance problems. 

 

Another major achievement, compared to the best results from [49], ECOLE approach improves 

classification performance by 7.3% in terms of GM across all datasets, with 95% less function 

evaluations. 

 

There are several next steps for extending this work in the final phase of ECOLE. First, we intend to 

apply more Bayesian optimization variants such as SMAC, SPO, and MIP-EGO, in order to study 

the performances between variants in this domain. Additionally, instead of applying hyperparameter 

tuning on the level of an individual dataset, we are interested in studying the behavior of HPO 

approaches in tuning on a set of datasets. Next, besides Bayesian optimization, we will extend this 

research with other state-of-the-art HPO approaches such as irace [52] and Hyperband [53]. Finally, 

the outcomes of this work will be applied at Tata steel4 and HRI-EU5, in order to minimize the human 

effort in solving many real-world problems such as fault detection problems and computational 

design optimization problems. 

  

                                                 
4 Tata Steel Netherlands Technology B.V., Velsen-Noord, The Netherlands 
5 Honda Research Institute Europe GmbH, Offenbach/Main, Germany 
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Appendix A. Additional plots 

The distribution of GM over 10 repetitions for 44 datasets is visualized in Figure 6. Each box plot 

represents 10 repetitions. The horizontal-inner line shows the median. The whisker's ends show the 

lowest and the highest observed values (here, the whisker's scale is taken as 1.5).  The ends of the 

color-box show the first and third quartiles, respectively. The dots in color represent outliers, and 

black-dots show the observed values. Apart from datasets "iris0", "shuttle-c0-vs-c4", "ecoli-0_vs_1", 

and ''shuttle-c2-vs-c4'', where all approaches get equal GM, we observe the following: 

• The BO approach's median values are higher than those of the Grid-Def approach in 38/40 

cases, except datasets "glass4" and "ecoli2". The most significant improvement is recorded in 

dataset "glass2".  

• In the family of two HPO approaches, median and whiskers values of TPE are higher than 

those of Random search on 39/40 datasets, except the dataset "glass6". 

 

 
Figure 6. Box plots showing the distribution of Geometric Mean (GM) for 44 data sets. The black-

dots inside boxes show the observed values 


