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Executive summary 

 
The objective of WP2.1 is to study experience-based high-dimensional and big-data assisted 

optimisation. The status of this work package within the ECOLE project is presented in this report. 

Our study on the representation of experience in the form of inductive biases for evolutionary 

search algorithms is first introduced (in Section 5). Particularly, this is done by means of 

investigating methods to design operators tailored for specific continuous single-objective 

optimization problems. The existing work in the literature which has been proposed so far only 

considers experience in the form of previously found solutions, but completely neglects a 

procedural view. The results show that operators can be indeed designed for low-dimensional and 

regular structured problems. Apart from this, our study on the issue of high dimensionality in 

Surrogate-Assisted Optimization is also presented (in Section 6). In particular, some of the most 

common dimensionality reduction techniques are compared against each other to efficiently 

construct the low dimensional surrogate models which are applicable for expensive to evaluate 

computer simulations. The results in this section demonstrate the efficacy of Principal Component 

Analysis and Autoencoders for dimensionality reduction in surrogate modeling. This is since the 

surrogate models based on Autoencoders achieve highest modeling accuracy in 132/720 test cases, 

whereas the surrogates based on Principal Component Analysis achieve the best optimal function 

value in 82/720 cases. In most of the remaining cases, the performance of the dimensionality 

reduction techniques is analogous.   

 

 

 

Major Achievements 

 

Major scientific achievements concerning the research invested in this deliverable are presented. 

In particular, short answers to the most important research questions  − practical issues − are 

described: 

 

Research Questions Discussion 

 

What is the state of literature and 

what are major knowledge gaps 

existing in existing research on 

experience-based optimization? 

 

The state of the literature is comparably sparse and 

existing work offers vastly different notions of 

experience. Especially in more recent literature the 

procedural view has been completely neglected.   

 

 

What are properties of existing 

algorithm designs and which 

methods can be used to extend and 

improve them? 

 

 

In most existing algorithms, so called operators draw 

random variates from symmetrical and isotropic 

distributions. We could show that by keeping statistics 

about their inner mechanisms we design improved 

operators tailored for a specific problem. 

 



 

 

 

 

 

 

How can the discovered knowledge 

gaps be related to concepts and 

efforts in similar research fields? 

 

 

The effort of designing improved operators can be seen 

as an application of machine learning to construct 

inductive biases for search-based optimization 

algorithms.  

 

 

 

What are potential ways of relating 

them to application scenarios? 

 

 

The most practical scenarios at hand are improved 

initializations for estimation of distribution and CMA-

ES algorithms. Potentially also in regards to 

hybridization with dimensionality reduction techniques 

and similar scenarios in combinatorial optimization.  

  

 

 

How does high dimensionality 

affect the practical applicability of 

surrogate modeling? 

 

For expensive to evaluate objective functions e.g., 

computer simulations, high dimensionality can severely 

affect the applicability of surrogate modeling since the 

associated computational cost becomes prohibitively 

high (Table III). 

 

 

Which dimensionality reduction 

technique is best suited to 

efficiently construct the low 

dimensional surrogate models? 

 

Our findings demonstrate the effectiveness of Principal 

Component Analysis and Autoencoders for efficiently 

constructing the low dimensional surrogate models 

(Figure 11 - Figure 16). 

 

 

How does the size of the latent 

dimensionality (in the 

dimensionality reduction 

algorithm) affect the accuracy of 

the corresponding low dimensional 

surrogate model? 

 

 

In our findings, the size of the latent dimensionality only 

has a nominal impact on the accuracy of the low 

dimensional surrogate model (Figure 11 - Figure 12). 

Problem landscape, on the other hand, has the biggest 

impact on the accuracy of the corresponding surrogate.  

 

 

Does the choice of modeling 

technique, e.g., Kriging, 

Polynomials, significantly affect 

the quality of the low dimensional 

surrogate models? 

 

For the commonly employed modeling techniques – 

Kriging and Polynomials – our findings do not indicate 

that (Figure 11 - Figure 16). Note, however, that further 

research must be invested to validate this on more 

complex cases. 

 

 

 

  



 

 

 

 

 

1. Introduction 
 

In the Experience-based Computation: Learning to Optimise (ECOLE) project, we aim to address 

several challenges in the automotive setting, including Optimisation using Natural Computation, 

Multi-objective optimisation and System Engineering and Big Data Analytics. The project has been 

further divided into several subprojects, where each early stage researcher (ESR) is responsible for 

each subproject. The research aims of ECOLE include shortening the product cycle, reducing the 

resource consumption during the complete process, and creating more balanced and innovative 

products. Instead of just developing technologies to solve a given problem, it takes a bold step 

forward and propose to use knowledge automatically across different problem domains. Referring 

to knowledge, skill, and practice derived from problem solving processes in time, the goal is to 

automatically learn and transfer the experience of optimizing one product or process for solving 

other optimization problems. 

 

Due to the lack of consideration of robustness, multi-objectivity and nonlinear constraints, current 

techniques are unable to meet the industrial needs for system-level optimisation. In Work Package 

2 (WP2) of the ECOLE project, the research focus is to deal with multiple conflicting objectives 

in optimisation for learning in dynamic and uncertain environment. WP2.1, as an individual part 

in WP2, focuses on the development of methods and foundations for high-dimensional non-linear 

optimisation by making use of experiences derived from previous optimisation.  

 

The remainder of this report is organized as follows. In Section 2, the background knowledge of 

three different aspects of experience are presented. The details on our achievements are introduced 

in Section 3, Section 4, Section 5 and Section 6 respectively. Section 7 concludes the report and 

outlines further research. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

2. Background 
 

Nowadays, as product complexity increases, with the application of advanced sensors and the 

booming of computer storage, the dimensionality and volume of collected data have been 

becoming more and more complex, which puts enormous burdens and challenges on existing data 

analyses techniques and optimization methods. This situation requires the proposal of more 

advanced systematical methodologies. Most existing optimization techniques always solve a new 

problem from scratch without assuming any prior knowledge of the problem, which may show 

ineffectiveness when dealing with more complicated problems due to the involved high-dimension 

and highly-complex data. Nevertheless, real-world problems rarely exist in isolation. Specifically, 

many industrial systems in the real-world are designed with a lifetime and expected to resolve a 

large number of practical problems before the shutdown. Those problems, within a specific 

domain, may either be similar or even repetitive. Thus, the idea of using experience to tackle a 

newly emerging while related task is naturally motivated. 

 

 

In experience-based optimization, it is important to figure out what is the experience, i.e. what is 

the representation of the experience in terms of optimization. There are three different aspects of 

representing the experience: (optimal) solutions, search operators and surrogates, which are 

discussed in the literature [1] [2] [3] [4]. When an optimization problem is to be resolved, one or 

more optimal solutions are expected to be obtained. Therefore, the most intuitive representative 

way of using past experience is using (optimal) solutions. For example, in [1], several transfer 

learning methods are implemented by transferring a number of good individuals or sub-individuals 

from the source problem to the target one for Genetic Programming. 

 

Another type of the representation of experience is the search operator [2] [3]. In real-world 

problems, experienced experts are always aware of the rough direction to get the optimal solutions 

when given a similar problem or task, which is the real experience of the expert. In evolutionary 

optimization, good solutions of an objective function are always sequentially found by genetic 

operators and selection processes. The knowledge in the search operators can be extracted in the 

form of empirical and improved distributions, which can be transferred to help solving similar 

problem instances. 

 

In most cases of the real-world, fitness functions of a problem are unknown or it is extremely 

computationally expensive to evaluate solutions even though the fitness functions are known 

beforehand. To tackle those problems, surrogates or meta-models [4] are built to approximate the 

real fitness functions and then the normal optimization processes are conducted on the 

approximated expensive functions. Considering that two problems are similar in a knowledge 

specific domain, it is very likely that two built surrogates are also similar. It is a great waste of 

time to rebuild the surrogate for another fitness function from scratch. The intuitive idea is to reuse 

one established surrogate for another different while similar expensive function. Therefore, in 

those problems, the notion of experience is the surrogate or meta-model. 

  

 

 



 

 

 

 

 

3. Instance-based Transfer Approaches 
 

 

 

Figure 1. The instance-based approach from [5] as investigated by ESR7. 

 

Instance-based transfer approaches are due to their simplicity some of the earliest ones which have 

been proposed within the literature on knowledge transfer in search-based optimization. 

Noteworthy approaches are CIGAR [6] and GTL [7], which both have been originally proposed 

for optimization problems solved using the binary formulation of genetic algorithms. The 

framework of Case-Injected Genetic Algorithms (CIGAR) [6] from 2004 may be considered as 

one of the seminal works and also shares high similarity with the Genetic Transfer Learning (GTL) 

[7] framework from 2010. Central to CIGAR is a case-base, in which every case represents a 

solution from a previously solved problem. Similar to GTL, when a problem is tackled, CIGAR 

extracts intermediate solutions at every generation and stores them into a case-base. When tackling 

a new optimization problem, CIGAR queries the case-base to find the ones with the most similar 

of previously tackled problems and uses the solutions stored in these to partly initialize the start 

population for the optimization algorithm on the new problem. However, the authors openly 

acknowledge, that in many scenarios problem similarity measures may not be trivially definable. 

Therefore, they suggest as a way to cope with this scenario, to reflect problem similarity by means 

of solution similarity. Explicitly so, by repeatedly querying the case-base during the algorithm run 

for solutions similar to the current best one within the solution population. The found solutions 

from the previously solved tasks are then subsequently used to replace the worst performing 

solutions in the current population. Both CIGAR and GTL are based on binary genetic algorithms. 

While the former explicitly consider combinatorial single-objective problems arising in 

application scenarios, the latter consider solely 2D synthetic continuous single-objective problems.  

 



 

 

 

 

 

Variations of the instance-based approach have more recently emerged within the scenario of 

continuous multi-objective optimization [8]. Similar to CIGAR in solution similarity mode, these 

approaches repeatedly inject solutions from previously solved optimization problems into the 

population while solving a new target task, but do so by repeatedly constructing a linear mapping 

between ranked intermediate solutions of a task, and then subsequently either map final or current 

best solution of a past or concurrent related task into the population.  

 

Particular interesting approaches within this scenario have been developed in the domain of 

dynamic multi-objective optimization [5], [9], [10]. These explicitly use machine learning 

techniques to construct a mapping such that it reduces the distances between the Pareto-fronts 

between source and target tasks in a low-dimensional feature space. For example, work on the so 

called Transfer Dynamic Multi-Objective Evolutionary Algorithm (Tr-DMOEA) [5]  minimizes 

distances in the latent space based upon the MMD measure using the TCA algorithm [11]. Within 

the ECOLE project, the work of ESR7 has dealt with investigating this instance-based approached 

from [5]. Closer scrutiny has shown that Tr-DMOEA is computationally expensive [12] and 

therefore might not be considered feasible for real-world problems. Deliverable D3.4 deals more 

in-depth with the analysis discussing the results of this study. More recent work based upon on 

manifold learning has shown to be able to realize significant performance improvements [9]. 

However, in conclusion it is quite noteworthy that none of the former nor recent works further 

explores the possibility of exploiting knowledge about problem characteristics.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

4. Model-based Transfer Approaches 
 

Model-based approaches on the other hand explicitly concern techniques to build predictive 

models from data generated during optimization runs. There are in principle two ways on how 

knowledge transfer research has found its interest in these techniques. In multi-objective 

optimization, this has taken the form of using density estimation techniques to model distributions 

of candidate solutions.  

 

Particularly noteworthy is the proposed Adaptive Model-based Transfer Evolutionary Algorithm 

(AMTEA) from [13]. Within their work, a Gaussian distribution is fitted to each final population 

obtained from previously solved multi-objective optimization problems and the obtained 

parameters are stored within a database. Thus, when encountering new and previously unseen 

problems, the algorithm halts at regular intervals of Δ iterations and performs a stacked density 

estimation of the current solution population using the Gaussian distributions stored within the 

database constructed from the previously solved problems. Effectively, the obtained mixture 

weights subsequently encode the solution similarity between the single target and the multiple 

source problems. Using this mixture model, the algorithm subsequently can sample candidate 

solutions from previously solved optimization problems based upon their similarity to the target 

distribution. This approach has the advantage that it circumvents the problem of negative transfer, 

i.e. the uncontrolled transfer of knowledge into the optimization procedure which deteriorates 

algorithm performance. This effect has shown up in previous work [8] and can be considered as a 

potential key weakness and danger of any proposed knowledge transfer framework. In a similar 

fashion to AMTEA, also the work from [14] has employed Gaussian distributions. However, in 

their proposed multisource selective transfer framework, the similarity between solution 

distributions of the current target problem and the ones stored from the source problems in the 

repository are explicitly calculated through the Wasserstein distance. Based upon the calculated 

similarities, different source selection strategies can subsequently be employed. 

 

The second line of research concerning knowledge transfer through model-based approaches has 

concerned surrogate-assisted and Bayesian optimization. In surrogate modelling, also referred to 

as meta-modelling, one attempts to build a regression model of the objective function of the 

considered problem. There are in principle many different scenarios in which building such a 

model can be of interest [15] [16]. However, in most cases one wants to build the regression model 

such that one can spare expensive function evaluations. Bayesian optimization on the other side, 

attempts to directly guide the search for optimal solutions using the metamodel of the objective 

function. In principle, two works can be identified on both approaches [17] [18]. Within the 

ECOLE project, the work of ESR3 in Section 6 as well as deliverable D2.3 is concerned with the 

hybridization of dimensionality reduction with surrogate-assisted optimization to this matter.  

 

Interestingly, aside from these mentioned ones, barely any of the recent literature tries to learn 

across problems explicitly by means of internal sampling models for evolutionary algorithms. 

Quite intuitively, the interplay between algorithm and optimization problem should enforce 

characteristic search strategies and behaviors. Modern model-based algorithms such EDAs [19] 



 

 

 

 

 

and the CMA-ES [20] acknowledge this by adapting a distribution online during the optimization 

run. However, they do not attempt to memorize these in a more rough and abstract way, such that 

these can be reused on similar problems. In many ways, this perspective might be also the only 

meaningful notion to realize knowledge transfer in the continuous single-objective optimization 

scenario. The work of ESR6 within Section 5 therefore particularly investigates this research 

question. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

5. Inductive Biases in Search-based Optimization 
 

 

 

Figure 2. Examples of differently structured fitness landscape from different continuous 

optimization problems. 

 

One of the key questions concerning the notion of experience in search-based optimization 
algorithms, is the question for what can be considered to constitute any form of learnable 
knowledge and how is it represented in the first place. Many modern algorithms such EDAs [19] 
and the CMA-ES [20] have by default isotropy assumptions build into their design. However, these 
design assumptions can be considered to become violated when specific problems are considered. 
As they might possess special structures or certain forms of irregularities superimposed on top of 
them (c.f. Figure 2). 
The project of ESR6 therefore concerns the idea of using various forms of analytics as a way to 
explicitly learn and predict so called inductive biases for search-based optimization algorithms. 
Inductive biases pose the set assumptions a learning algorithm needs to form from tackling training 
problems and apply to unseen situations [21]. Thus, they are a necessary prerequisite for any form 
of generalization to occur. 
The algorithm components we pay a justified focus within our study are in our case search 
operators, and research on obtaining these can be considered as making a contribution towards 
understanding and improving the way “how” an optimization algorithm solves problems. 
 

5.1. Analysis of Operators and Algorithms 

Essentially, one of the key questions which needs to be solved in the first place is in regards to 



 

 

 

 

 

finding a way of extracting knowledge from optimization algorithms by means of finding a way 
of modifying them to produce reasonable and abundant statistics about their inner mechanisms. 
The basic outline of an evolutionary search algorithm is elaborated in the following: Given a 
specific problem, the algorithm is initialized with a start population which is randomly initialized 
on the search space. The start population can be considered to represent the practitioner’s initial 
guesses about possible solutions for a given problem. Given this start population, subsequently so 
called variation and selection operators are applied to iteratively modify the given solutions. In 
analogy to evolutionary biology each iteration is referred to as „generation“. The goal of an 
evolutionary search routine in the usual global single-optimization scenario therefore is to 
iteratively modify and select the set of candidate solutions in a way such that high-performing 
solutions are retrieved according to a given pre-defined criteria, or after a given predefined number 
of maximum iterations. 

• Variation Operators can in principle be either unary or n-ary. Meaning, they are either 
applied on each solution individually, or in groups of n pre-selected solutions. The most 
common operators used in evolutionary search routines are unary „mutation“ operators and 
binary „crossover“ operators. Both considered in a direct analogy to evolutionary biology. 
The meaning of mutation is essentially to introduce noise into a solution, such that new 
areas of the search space are explored. On the other hand, crossover can be considered as 
a form of ‚mating‘ known solutions to create new ones. From a mathematical point of view,  
it can be considered as an attempt in finding new well performing regions of a partially 
known solution distribution by interpolating from known samples. However, a key 
understanding in evolutionary biology is that only through mutations novelty can emerge 
[22]. In fact, the emergence of the latter ‚crossover‘ mechanism can be still considered to 
be a kind of puzzle within evolutionary biology. However, it is argued that it aids a rapid 
adaption in the scenario of small populations sizes. 

• Selection Operators have their use in evolutionary search routines as a way of maintaining 
a fixed size of candidate solutions. As often within an iteration, more solutions are 
produced than can be effectively maintained, the selection operator therefore decides on 
which ones are allowed to proceed into the next phase. There are in principle different ways 
of implementing this operation, motivated by different perspectives and understandings of 
natural selection processes. However, we spare a further discussion of them in favor of a 
mere functional understanding. 

 

5.2. Extracting Knowledge from Evolutionary Searches  
All three operators have an impact on the procedural performance of an evolutionary search routine. 
In principle, they introduce various options for us on how we may modify them such that their 
performance can be tuned, measured and improved. However, it is clear from the prior discussion 
that the unary mutation operator is most important within the search process, as it is the prime 
source of variation. Thus, it allows the optimization algorithm to generate solutions which would 
be otherwise unobtainable through cross-over operations alone. 
In the usual evolutionary search routine, given a start population of solutions with known fitness 
values, crossover is conducted first, followed by mutation, recalculation of fitness values, and 



 

 

 

 

 

subsequent selection to form the new population. Thus, the direct effect of cross-over and mutation 
operators on obtaining good solutions and ensuring fast convergence is rather obscured. 
Mechanically, unary mutation operators in their most basic form can be considered to be 
comparably simple. This is because they rely simply upon adding random variates on solutions, 
sampled from symmetric distributions which are shared by all solutions, independently from their 
position within the search space. Binary cross-over operators on the flip-side are particularly more 
sensitive to specific chosen solution pair, as the offspring created from them directly depends upon 
their position in the search space. Selection operators can in principle introduce further 
stochasticity, however it has been suggested that so called  ሺߤ, ߤand  ሺ (ߣ +  selection schemes (ߣ
lead to performance boosts in mutation-based algorithms [23], where in the former all the 
progenitor solutions are discarded and in the latter   only new solutions are accepted into the 
successor generation, which have notably improved the fitness in comparison to their progenitors. 
Considering the simplicity and importance of unary mutation operators, as well as the nature of 
the  ሺߤ +  selection scheme, it is particularly tempting to consider an algorithmic framework (ߣ
solely based upon these two operations. In principle, it is obvious that within such a framework 
only sampled random variates are useful which improve the solution quality while any worsening 
ones are discarded by the selection scheme. Thus, one is inclined to keep statistics about the quality 
of the performed mutations during algorithm runs, and construct from these inductive biases. These 
can be represented in the form of improved operators, such that they can be used to realize 
performance improvements on re-runs of similar problems. 
Even though such a framework may spare out many of the complexities of modern algorithms, it 
can still serve as an effective model to understand the pitfalls and opportunities in regards to 
constructing experience-based approaches from a procedural view. 
 

5.3. Extension of Candidate Algorithms 

 

 

 
Figure 3. Outline of the basic framework studied within our work. 

 

 



 

 

 

 

 

In the ECOLE project setting, we consider continuous single-objective optimization problems of 
the form �: � ⊆ ℝ� →  ℝ  , where � is the search space and d its associated dimension. We further 
use for our investigation a basic continuous evolutionary algorithm, such that solutions are directly 
represented in the search space by vectors 

 ࢞ሺ݆ሻ = (�ଵሺ݆ሻ, �ଶሺ݆ሻ, ⋯ , �ௗሺ݆ሻ), 
 

where the variable j simply indicates the j-th solution. In the following, mutations are considered 
to be drawn from a multivariate Gaussian mutation operator 
 Δ࢞ ∼ �ሺ૙, �ሻ , 
 

with spherical covariance � = ૚ ⋅ �−ଶ and fixed sampling width �, which upon mutation shifts 
solutions such that ࢞′ = ࢞ + Δ�  
 

To learn inductive biases, the developed framework keeps track of mutations performed. The 
necessary modifications to the evolutionary algorithm are illustrated in Figure 3. In principle, the 
standard architecture is only extended by a repository, which is filled with copies of pairs of fitness 
values f and solution positions x from before and after application of the mutation operator. This 
mutation tracking allows in the following to further distinguish between improving 

 �ሺ࢞ሺ݆ሻ௕௘௙௢�௘௜ ሻ  − �ሺ࢞ሺ݆ሻ௔௙�௘�௜ ሻ ൒ Ͳ 

 

and worsening mutations 

 �(࢞ሺ݆ሻ௕௘௙௢�௘௜ ) − �(࢞ሺ݆ሻ௔௙�௘�௜ ) < Ͳ. 
 

As the ሺߤ +  selection scheme is used and therefore only mutations are accepted which are ( ߣ
improving, we thus can filter them according to their quality and consider the set of improving 
mutations to represent the inductive bias for a given optimization problem. To harness it, we can 
use density estimation methods to explicitly construct new search operators. 
 

  



 

 

 

 

 

5.4. Techniques for Constructing Search Operators 

 

5.4.1 Histograms 

 

Figure 4. Illustration of the inverse transform sampling technique. 

These are among one the most intuitive techniques to be used. Given a data-set ܦ = {࢞ଵ, ⋯ , ࢞�} 
for for ࢞௜ ∈ ℝ�, one partitions the data space into a number of equisized bins ܤ = {ܾଵ, ⋯ , ܾ௡}. 
Subsequently, for every bin ௜ܾ ∈  B t the number of data points ܿ௜ for which �௝ ∈ ܾ௜  is counted and 
probabilities are calculated based on these. Based upon the probabilities one can easily calculate 
pseudo-random numbers from the modeled distribution using the inverse transform sampling 
technique [24] as illustrated in Figure 4. For example, in the case of a discrete distribution one first 
samples a random number ݎ ∈ [Ͳ,ͳ] . Subsequently, we can calculate the cumulative density 
function ܦ�ܥሺ݆ሻ = Σ௜=ଵ௝ �௜. To generate a pseudo-random number we choose j such that ܦ�ܥሺ݆ሻ ݎ> ൑ ሺ݆ ܦ�ܥ  + ͳሻ  and based upon the associated part of the data space defined by bin ௝ܾ  we 
generate the random number. E.g. for ௝ܾ = [ܽ, ܾ], we uniformly sample a random number from [ܽ, ܾ]. While histograms are at first glance intuitive and therefor tempting, their use on the flip-
side is rather cumbersome due to them being parametric. Thus, requiring the explicit definition of 
bin positions and widths. And often times Further, pre-processing steps such as the cropping of the 
data-space to ensure that those parts are covered at good resolution which reveal the essential 
structure the modeled distribution. 
 

5.4.2 Kernel Density Estimation 

 

These techniques, which are also known in signal processing as  Parzen windows, are among the 
most accurate methods one can use to model a data distribution. Essentially, for a given data-set D 
we place a kernel function ࡴܭሺ࢞, ࢞௜ሻ  on every data point �௜ ∈ ܦ ⊆ ℝ� , where ࡴ ∈ ℝௗ×ௗ  is a 
parameter or bandwidth matrix shared by all data points and controlling the shape of the kernel 
function. The full data distribution can then be modeled as ሺ࢞ሻ = ଵ� Σ௜=ଵN ,ሺ࢞ࡴܭ ࢞௜ሻ . For the kernel 
function different choices can be made. A popular one is the use of the Gaussian kernel. A key 
drawback of kernel density estimation method, however, is the determination of the bandwidth 
matrix H. While in principle one can do this by maximizing the log-likelihood in a cross-validation 



 

 

 

 

 

training scheme, this approach is known to underfit. Likewise, bandwidth selection rules can be 
employed but suffer from the same issue [25]. The mathematically correct way to determine H 
would be by minimizing the mean integrated squared error of f to the true distribution f* using a 
bandwidth selection method. However, the former distribution is in most cases not know. For 
sampling from a kernel density estimate, one simply selects a point ࢞� ∈  from the dataset at ܦ
random and subsequently samples from the kernel function ࡴܭሺ࢞, ࢞�ሻ. While accurate, sampling 
within kernel density estimates can be intensive in regards to memory requirements. 
 

 

5.4.3 Gaussian Mixture Model 
 

These are among the more popular and well-studied approaches for density estimation. The 
Gaussian mixture model is in some way similar to the kernel density estimation technique with 
Gaussian kernel, however is more sparing in its complexity. In the Gaussian mixture model, the 
data distribution is modeled as �ሺ�ሻ = Σ௜=ଵK �௜ �ሺ�௜ , �௜ሻ , where �௞   are the so called mixture 
coefficients and ܭ ≪  is the number of mixture coefficients, which naturally is chosen such |ܦ |
that it is much smaller than the total size of the data set D. The parameters �௜  , �௜  and �௜  are 
determined using the expectation-maximization (EM) algorithm. The number of mixture 
components has to be chosen by the practitioner first and is in principle likewise to kernel density 
estimation a non-trivial topic. However, one can similarly reside from a pragmatic point of view 
to maximizing the log-likelihood using a cross-validation training scheme. The mixture 
coefficients are determined such that Σ௜=ଵ� �௜ = ͳ, thus each coefficient �௜  can be interpreted as a 
probability for choosing the specific component i. In this framework, pseudo random numbers can 
be generated using ancestral sampling. Meaning that for a given distribution �ሺ࢞|ࢠሻ �ሺࢠሻ, we first 
sample ࢠ� ∼ �ሺࢠሻ and based upon it sample ࢞� ∼ �ሺ࢞|ࢠ�ሻ. For the Gaussian mixture model this 
would equate to �ሺ{�, �}|݅ሻ �ሺ݅ሻ, where �ሺ݅ሻ = {�ଵ, ⋯ , ��} and �ሺ{�, �}|݅ሻ = �ሺ�௜ , �௜ሻ. Where 
p(i) can be sampled using the previously mentioned inverse transform sampling technique and the 
normal distribution �ሺ�௜ , �௜ሻ using readily available methods. 
 

  



 

 

 

 

 

5.5. Properties of the Retrieved Distributions 

 

Figure 5. Different mutation distributions retrieved from running an evolutionary search routine 

under variable settings: Different sampling widths (Column 1), different problem parameters 

(Column 2), different generational intervals (Column 3), as well as all mutations and only 

worsening mutations (Column 4, top to bottom). 

We start our first series of experiments with an investigation into the algorithm-problem 
interaction, based upon the expectation that the interplay between algorithms and problems should 
lead to notable differences in the statistical distributions. Experiments have been performed to 
investigate this using our extended evolutionary algorithm with the configuration as detailed 
previously and a mutation rate of 1. 

In the first experiment we consider Griewank's benchmark function with � =  [−͸ͲͲ,͸ͲͲ]ௗ . 
However, we keep the problem parameters constant and only vary the sampling width for 
mutations from �=1.5 to 4. In the second one we keep the algorithm configuration constant and 
consider exclusively Ackley's benchmark function [26] with � =  [−͵ʹ.͹͸ͺ,͵ʹ.͹͸ͺ]ௗ  and the 
depth parameter being usually defined as ܽ = ʹͲ. However, in the following we vary a in the range 
from 1 to 20, thus varying the depth and steepness of the funnel while essentially keeping the 
positions of local extrema the same. In the third experiment, we simply visualize different 
generational intervals from 0 and 100, as well as 100 to 1000. While in the last experiment, we 
simply show the distribution of all mutations, as well as the worsening ones for Griewank’s 
function for comparison.  Histogram representations of all retrieved distributions are illustrated 
from first to fourth subfigures of Figure 5. 

We find on Griewank's function [26] where we only vary the sampling width �, that for � = ͳ.ͷ, 
the algorithm only retrieves a Gaussian multivariate distribution. After significantly enhancing the 
sampling to � = Ͷ , we can however retrieve a neighborhood structure of peaks arranged in a 
hexagonal grid akin to the pattern in the fitness landscape in Figure 2. Note, that we can interpret 



 

 

 

 

 

the recovered distribution as consisting out of a central part for local improvements and an outer 
part for long-range exploration of the neighborhood. 
 

On Ackley's function for the parameter a=20, the retrieved distribution resembles a simple 
multivariate normal distribution and does not seem to encode any problem specific information. 
Setting the parameter to a=1, the retrieved distribution strongly differs from a Gaussian bell shape 
by having further peaks akin to grid points in a Moore neighborhood. The algorithm configuration 
thus is able to resolve notable problem-specific information. In the third experiment on Griewank’s 
function again, we find that in the initial generations the retrieved distribution strongly resembles 
a multivariate normal distribution, and only in the latter phase, the minima structure becomes very 
prominent. Note, that in the 4th experiment, the full distribution is Gaussian as expected, however 
the distribution of worsening mutations has likewise appearance. Thus, building operators by 
suppressing mutations may not be considered a viable strategy. 
 

5.6. Hyperparameter Optimization and Model Selection 

 

In principle, when designing search operators through density modeling, one could use different 

techniques. As previously mentioned, kernel density estimation is the most accurate technique, 

however may at times suffer from the problem that it can be memory intensive. The Gaussian 

mixture model also offers a viable alternative in which the dataset is reduced to a set of n 

descriptive clusters each modeled by a normal distribution. Sampling in this framework can be 

done using the previously mentioned ancestral sampling technique. While Gaussian mixture 

models are known to be an efficient method for density estimation and clustering, determining the 

best number of components n in an automatic fashion is a non-trivial topic. In principle, this is also 

Figure 6. Comparison of the number of components retrieved using the Log-Likelihood and 

BIC Score on variable benchmark functions of differing dimensionality. 



 

 

 

 

 

highly dependent upon the particular application of choice [27]. The off-the-shelf approach is to 

directly maximize the log-likelihood given by ݈ሺ�|�, �ሻ ∶= Σ௜=ଵ௞  ݈� { Σ௝=ଵ௡  �௝�(࢞௜|�௝)} 

with respect to the number of components n, where � are the parameters determined by EM 

algorithm. Alternatively, to prevent overfitting on may instead consider the so called Bayesian 

Information Criteria (BIC) ࡯ࡵ࡮ =  − ʹ ݈ሺ�|�, �ሻ + �௡ ݈�ሺ݇ሻ, 
which modifies the log-likelihood through an additional term which explicitly penalizes more 
complex models through the factor �௡  =  � ሺͳ + ݀ + ݀ሺ݀ + ͳሻ/ʹሻ + ͳ, scaling in the dimension 
d ofthe dataspace, as well as size k of the fitted dataset. The ideal model n is then the one which 
minimizes the respective BIC value. 
We compare the found model complexity (c.f. Figure 6) by maximizing the log-likelihood in a 10-
fold cross validation training scheme with the one suggested by the BIC score over a range of four 
different benchmark functions of varying dimensionality. Overall, we can confirm the expectation 
that the BIC score suggests the usage of low-complexity models. However, both methods show a 
tendency to break down for more than three dimensions, thus suggesting the use of the lowest 
complexity model with only a single component. Alternatively, one may reside to the view that the 
goal of density modeling should merely lie in reducing the complexity of the dataset. Thus, we 
could by this willfully neglect any model selection procedure and force the mixture model to have 
a fixed number of n components. While in principle this is has the danger of overfitting, one might 
acknowledge that this still a much more desirable property than underfitting with low-complexity 
model. Likewise, model selection procedures such as the BIC score assume by design that the 
underlying distribution is generated by a finite set of normal distributions in the first place, which 
can be considered an unrealistic assumption for the empirical distributions and at best only valid 
in the case of infinitely many components. 
 

 

5.7. Effectiveness of the Learned Operators 

 

In the following we conduct experiments over a range of 9 different optimization problems listed 
in Table I. We group these into unimodal and valley-shaped problems (1st-3rd row), multimodal 
problems with single global optimum and high regularity (4th-6th row) and multimodal problems 
with single global optimum and high irregularity (7th-9th row).  
 

All experiments are conducted with a population size of ߤ = ͳͲ  and we generate at each 
generation ߣ =  ͳͲ offspring members by randomly selecting individuals and mutating them. In 
all experiments, the population is initialized randomly within the entire search space, where we 
use additionally a penalization for the difficult multimodal problems by means of rejecting 
mutations crossing the search space boundaries. This is necessary, as otherwise in these problems 
lower optima could be reached in the outer areas. Sampling widths are initialized such that � = Ͷ  



 

 

 

 

 

for the problems in row 1-6 in Table I. For the difficult multimodal functions we re-adjust the 
widths where we use for Schaffer σ =  ͳͲͲ , Schwefel's function σ =  ʹʹͲ, for Eggholder σ =͵ʹͲ. Experiments are conducted over 1000 generations and we accumulate data per experiment 
from 100 runs. Problem dimension is kept at d=2 in all experiments, as this still allows the 
interpretation of the retrieved distributions and lifts problems of data sparsity arising with more 
degrees of freedom. The mixture model is constructed for the first 6 functions by explicitly tuning 
the number of components using the log-likelihood  in Bayesian optimization routine. For the latter 
functions in row 7-9 we use explicitly the kernel density estimation technique, as otherwise the 
performance of the operator depends too heavily upon the retrieved mixture.  
 

Table I.  Definitions of the benchmark functions used within the study. 

Benchmark Search Space Function Definition 

Sphere [-5.12, 5.12]d fሺ�ሻ =  Σ௜=ଵௗ �௜ଶ 

Bohachevsky [-100, 100]d fሺ�ሻ =  Σ௜=ଵௗ−ଵ[�௜ଶ + ʹ�௜+ଵ ଶ − Ͳ.͵ cosሺ͵��௜ሻ − Ͳ.Ͷ cosሺͶ��௜+ଵሻ + Ͳ.͹] 
Rosenbrock [-5, 10]d fሺ�ሻ =  Σ௜=ଵௗ [ͳͲͲ (�௜+ଵ − �௜ଶ)ଶ + ሺ�௜ − ͳሻଶ 

Rastrigin [-5.12, 5.12]d fሺ�ሻ =  ͳͲd +  Σ௜=ଵௗ [�௜ଶ − ͳͲ cosሺʹ��௜ሻ] 
Ackley [-32.768, 32.768]d fሺ�ሻ =  −a exp [Ͳ.ʹ(݀−ଵ�௜=ଵௗ �௜ଶ)଴.5] +  exp [−ͳ/d Σ௜=ଵௗ cos ሺʹ��௜ሻ ]  +  a + e 

Griewank [-600, 600]d fሺ�ሻ =  ͳ + ͳ/ͶͲͲͲ Σi=ଵௗ �௜ଶ + ͳ/ͶͲͲͲ Π௜=ଵௗ cos ሺ�௜/√݅ሻ 

Schaffer [-100, 100]d fሺ�ሻ =  Σi=ଵௗ−ଵ ሺ�௜ଶ + �௜+ଵଶ ሻ଴.ଶ5  [sinଶሺͷͲ ⋅ ሺ�௜ + �௜+ଵሻ଴.ଵ଴ሻ + ͳ.Ͳ  ሺ√|�௜|ሻ 
Schwefel [-500, 500]d fሺ�ሻ =  Ͷͳͺ.ͻͺʹͻ d − Σi=ଵௗ−ଵ�௜݅ݏ� ሺ√|�௜|ሻ 

Eggholder [-512, 512]d fሺ�ሻ=  xଵ sin(√|�ଶ + ͳ − �ଵ|) cos(√|�ଵ + �ଶ + ͳ) + ሺ�ଶ + ͳሻcos ሺ√|�ଶ + ͳ − �ଵሻsin ሺ√|�ଵ + �ଶ + ͳ| ሻ 
 

Resulting minimum fitness curves per generation of the optimization runs are plotted per problem 
group in Figure 7, Figure 8 and Figure 9. Here, top rows are the runs using default mutation 
distributions, and the lower rows are runs which use distributions of beneficial mutations. Further, 
median (dark blue), mean (grey) and individual runs (light blue) are plotted. Quite notably, across 
all considered problems the improved operators significantly improve the search behavior. 
Particularly, it reduces late convergences by acting in a regularizing fashion. However, also 
evidently in Figure 8 for Rastrigin's function, where an increased density of runs halts at a fitness 
costs of about 1, eliminates premature convergence to local optima. Likewise the same 
observations can be made for Griewank's function. The approach can even be shown to work on 
difficult multimodal functions in Figure 9. However, we openly admit that further precautions have 
to be taken for these experiments to work. In particular, for all three we had the sampling widths 
to the previously mentioned values such that we achieved good convergence behavior in the runs 
with default sampling. Without taking these precautions, we were not able to achieve any 
improvements using the new operators. In fact, the retrieved operators were in this case even 
detrimental to the optimization and encouraged premature convergence into local optima.  
 

 

 



 

 

 

 

 

Table II. Performance values for the default operator (N) and improved operator (M). 

Particularly, minimum median and mean fitness after 1000 generations, as well as variance and 

a statistical significance comparison of both operators using the p-Value. 

Benchmark �̃min(N) �̅ min(N) �min(N) �̃min(M) �̅ min(M) �min(M) p-value 

Sphere 2.423e-3 3.631e-3 3.634e-3 2.218e-5 2.922e-5 2.731e-5 3.721e-32 

Bohachevsky 6.000e-2 7.318e-2 6.329e-2 3.200e-3 4.896e-3 5.168e-3 3.328e-26 

Rosenbrock 2.549e-2 3.357e-2 3.078e-2 5.442e-4 8.128e-4 8.372e-4 1.779e-30 

Rastrigin 3.835e-1 4.880e-1 3.914e-1 4.806e-3 7.991e-3 8.622e-3 3.126e-32 

Ackley 2.014e-1 2.295e-1 1.562e-1 1.613e-1 1.986e-1 1.220e-1 9.992e-34 

Griewank 2.031e-3 3.239e-3 2.749e-3 6.543e-5 8.354e-5 7.211e-5 1.464e-32 

Schaffer 1.463e+0 1.434e+0 3.454e-1 6.654e-1 6.439e-1 1.772e-1 8.518e-31 

Schwefel 2.227e+0 4.497e+1 6.056e+1 1.720e-2 2.734e-2 3.002e-2 4.268e-33 

Eggholder 3.483e-3 1.444e-2 2.470e-2 5.740e-5 1.713e+1 3.458e+1 5.286e-8 

 

We further list performance values of our experiments, as well as results from a statistical 
Wilcoxon rank sum test under normal approximation Table II. The results indicate that for a 
significance level of � = Ͳ.Ͳͷ, the null hypothesis can be rejected in all experiments. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Column 1-3: Fitness curves (light blue) for the unimodal Sphere, Bohachevsky’s and 
Rosenbrock’s function from 100 runs, as well as median (dark blue) and mean (dark grey) 

curves. Top row: With default sampling. Bottom row: With improved operators. 



 

 

 

 

 

 

Figure 8. Column 1-3: Fitness curves (light blue) for the multimodal Rastrigin’s, Ackley’s and 
Griewank’s function from 100 runs, as well as median (dark blue) and mean (dark grey) curves. 

Top row: With default sampling. Bottom row: With improved operators. 

 

 

Figure 9. Column 1-3: Fitness curves (light blue) for difficult multimodal functions. In 

particular, Schaffer's Schwefel’s and Eggholder function from 100 runs, as well as median 
(dark blue) and mean (dark grey) curves with adjusted sampling width to ensure 

convergence. 

 

 

 

 

  



 

 

 

 

 

6. High Dimensional Surrogate-Assisted Optimisation 
 

Surrogate-Assisted Optimisation (SAO) refers to solving the optimisation problem with the help 

of a (surrogate) model, which replaces the actual function evaluations by the model prediction. 

The surrogate model approximates the true values of the objective function under consideration. 

This is desirable if the objective function is too complex and/or costly. The abstraction provided 

by the surrogate model is useful in a variety of situations. For instance, it simplifies the task to a 

great extent in simulation-based modeling and optimisation by providing the opportunity to 

evaluate the fitness function indirectly if the exact computation is intractable. Surrogate models 

can also provide practically useful insights, e.g., space visualization and comprehension. Despite 

the advantages, SAO faces many limitations in constraint handling, dynamic optimisation, multi-

objective optimisation and high dimensional optimisation. 

 

Modeling high dimensional optimisation problems with SAO is challenging due to two main 

reasons. Firstly, more training data is required to achieve a comparable level of modeling accuracy 

as the dimensionality increases. Secondly, training time complexity often increases rapidly with 

respect to the dimensionality and the number of training data points. Consequently, constructing 

the surrogate model becomes costlier. To highlight this issue, upper bounds on the time 

complexities of the most common surrogate models are presented in Table III. Note that in Table 

III, D, ࡺ ,ࡺtrees, ࡺsv and ࡷ stand for the dimensionality, the number of training data points, the 

number of trees in Random Forest (RF), the number of support vectors in Support Vector Machines 

(SVMs) and the number of neighbors in K-Nearest Neighbors (KNNs) respectively. From Table 

III, it can be argued that higher dimensionality can severely affect the computational budget in 

SAO in two ways: directly, i.e., by a higher value of ࡰ, and indirectly, i.e., by a higher value of ࡺ ,ࡺtrees, ࡺsv and ࡷ.  
 
 

Table III. Training and prediction time complexities of the most common surrogate models. 

Notation �trees: is the number of trees in Random Forest, �sv is the number of support vectors, 

and K the number of neighbours in K-Nearest Neighbours. 

Model Training Prediction 

Quadratic Regression ࡻሺࡰ૝ࡺ + �ࡰ +  ૛ሻࡰሺࡻ ૛ሻࡰ

Random Forest ࡻሺࡺ૛ࡺࡰtreesሻ ࡻሺࡺࡺtreesሻ 

Support Vector Machines ࡻሺࡺ૛ࡰ +  svሻࡺࡰሺࡻ ૜ሻࡺ

K-Nearest Neighbors ࡻሺ૚ሻ ࡻሺࡰࡷሻ 

Kriging ࡻሺࡺ૜ࡰሻ ࡻሺࡰࡺሻ 

 

Various methodologies have been proposed to deal with the issue of high dimensionality in SAO 

including divide-and-conquer, variable screening and mapping the data to a lower dimensional 

space using dimensionality reduction techniques (DRTs). One of the most common DRTs is the 

Principal Component Analysis (PCA). PCA can be defined as the orthogonal projection of the data 

onto a lower dimensional linear space, known as the “principal subspace”, such that the variance 

of the projected data is maximized. Various generalized extensions of PCA have been established 

in the literature such as Kernel PCA, Probabilistic PCA and Bayesian PCA. On the other hand, 



 

 

 

 

 

Autoencoders (AEs) have been contemplated as feed-forward neural networks (FFNNs) trained to 

attempt to copy their input to their output, so as to learn the useful low dimensional encoding of 

the data. Like PCA, AEs have also been extended over the years by generalized frameworks such 

as Sparse Autoencoders, Denoising Autoencoders, Contractive Autoencoders and Variational 

Autoencoders (VAEs). Besides PCA and AEs, other important DRTs include Isomap, Locally-

Linear Embedding, Laplacian Eigenmaps, Curvilinear component analysis and t-distributed 

stochastic neighbor embedding. 

 

This section of the report summarizes the key results of the ECOLE project [28] on the comparison 

of DRTs for efficiently constructing the low dimensional surrogate models (LDSMs). To this end, 

PCA and AEs were chosen. Furthermore, Kernel PCA was incorporated due to the generalized 

non-linear extension of the classical PCA algorithm. Similarly, VAEs were also considered since 

they provide the non-linear stochastic encodings of the data space which can be utilized for 

constructing the surrogate models efficiently. The focal point of the research in ECOLE was to 

provide a novel perspective on the applicability of these DRTs in SAO. This was accomplished by 

performing an extensive quality assessment of the corresponding LDSMs on a diverse range of 

test cases. In the remainder of this section, the details on the experimental setup and the associated 

results on this research are provided. 

 

6.1. Comparison of Dimensionality Reduction Techniques 

 

6.1.1 Test Cases 

 

In ECOLE, ten unconstrained, noiseless, single-objective optimisation problems were selected 

from the continuous benchmark function test-bed known as “Black-Box-Optimisation-

Benchmarking” (BBOB) [29]. BBOB provides a total of twenty-four such functions divided in 

five different categories − “Separable Functions”, “Functions with low or moderate conditioning”, 
“Functions with high conditioning and unimodal”, “Multi-modal functions with adequate global 

structure”, and “Multi-modal functions with weak global structure”. Two functions from each of 

these categories were selected to diversify the landscape of the test cases. The selected functions 

were �૛, �૜, �ૠ, ��, �૚૙, �૚૜, �૚૞, �૚૟, �૛૙ and �૛૝. Each of these test functions was 

evaluated on three different values of dimensionality − ૞૙, ૚૙૙, and ૛૙૙. Additionally, all test 

functions were subject to minimization.  

 

6.1.2 Generating the Training Data 

 

The details on the data generation and preprocessing are now shared. For the purpose of data 

generation, the choice of training sample size ࡺ is problem-dependent. The practical advice [30] 

however is to begin with ࡺ =  stands for the ࡰ where � is usually a low valued scalar and ,ࡰ� 

dimensionality of the problem. Therefore, � = ૛૙ was selected for the Design of Experiment 

(DoE). Choosing � = ૛૙ was based on previous empirical evidence [30] as this resulted in a 

training data set of moderate size, which was neither too small to train nor too big to hinder the 

computational efficiency. Additionally, the testing data set with size ࡹ =  ૙. ૛ �ࡰ was generated 

to evaluate the modeling accuracy of the LDSMs. Notably, it was made sure that the training and 



 

 

 

 

 

testing data sets were completely disjoint − no data point was shared between the two sets. The 

sampling locations for both data sets were chosen using a maximum-distance Latin hyper-cube 

sampling scheme. The data preprocessing in this study was a rather straightforward task involving 

only the rescaling of the features between ૙ and ૚. 

 

6.1.3 Implementation Details 

 

Four DRTs were employed  −  PCA, KPCA, AEs and VAEs. For each of these techniques, 

specifying the size of the latent dimensionality – denoted as ࡸ – was crucial since it could affect 

the quality of the corresponding LDSM. Therefore, for each distinct value of dimensionality ࡰ, 

three values of ࡸ were chosen − ࡸ ∈ { ૙. ૠࡰ, ૙. ૝ࡰ, ૙. ૚ࡰ}. For instance, ࡸ ∈ { ૜૞, ૛૙, ૞} when ࡰ = ૞૙. In AEs and VAEs, both the encoder and the decoder had four hidden layers each with 

hyperbolic tangent non-linearity. For PCA and KPCA, a linear transformation of the original 

features was computed before performing the dimensionality reduction. Two (surrogate) modeling 

techniques were chosen − Kriging and Polynomial Regression (degree=2 with elastic-net penalty). 

Notably, both sets of techniques − the DRTs and the modeling techniques, had some hyper-

parameters. Therefore, it was crucial to tune these hyper-parameters to get the best quality 

surrogate models. 

 

6.1.4 Hyper-Parameter Optimisation 

 

At this stage, there were a total of ૠ૛૙ cases due to four DRTs, two modeling techniques, ten test 

functions, three values of original and latent dimensionality each ࡰ −   and ࡸ . Therefore, 

performing Hyper-Parameter Optimisation (HPO) for each of these ૠ૛૙ cases was infeasible. 

Hence, the number of cases were reduced to a total of ૠ૛ by aggregating the performance of the 

LDSMs on all ten test functions. This implies that the hyper-parameters for each of the ૠ૛ cases 

were optimised, where the cases were defined on combinations of three values of the original 

dimensionality ࡰ, three values of ࡸ, two modeling techniques and four DRTs. In each of these ૠ૛ 

cases, the hyper-parameters for the DRTs and the modeling techniques were optimised together 

based on the aggregated quality of the corresponding LDSMs on all ten test functions. The quality 

assessment for an individual LDSM, i.e., for a particular test function such as �૛, was measured 

by taking the so-called relative mean absolute error: 

 

 

 RMAE = ૚ࡹ ∑ ૚૙૙ࡹ�=૚ ⋅ ቆ|࢟� − ࢟�̂||࢟�| ቇ 
(1) 

 

where ࡹ  denotes the size of the testing data set. Similarly, ࢟�  and ࢟�̂  stand for the true and 

approximated, i.e., predicted, function values. For HPO, this RMAE was measured for all ten test 

functions by specifying ࡸ ,ࡰ, the DRT and the modeling technique. After this, the median of the 

RMAE values on all ten test functions was taken. The goal of the HPO thus simplified to find out the 

best configuration of the hyper-parameters which minimized this median. This process was repeated 

for all ૠ૛ cases. Overall, this approach made the HPO feasible and ensured that the configuration of 

the hyper-parameters generalized well across all ten test functions. Tree Parzen Estimator (TPE) 



 

 

 

 

 

algorithm was employed to perform the HPO for each of the ૠ૛ cases discussed above. The 

number of function evaluations were restricted to ૚૞૙ for finding the best configuration of the 

hyper-parameters. 

 

6.1.5 Evaluation Criteria 

 

Two criteria were used to evaluate and compare the LDSMs. The first criterion was that of the 

modeling accuracy. For this criterion, the LDSMs were first constructed in all ૠ૛૙ cases after 

performing the HPO. Since the modeling technique, the landscape, the dimensionality and the size 

of LDSM were varied, it was possible to perform a comprehensive analysis of the modeling 

accuracy of the LDSMs based on a particular DRT. RMAE in Eq. (1) was employed as the 

performance measure for this criterion. 

 

The second criterion to compare the LDSMs was the quality of the proposed optimal solution. 

Same experimental setup was repeated to compare the LDSMs for this criterion as well. This 

implies that the LDSMs in each of the ૠ૛૙ cases were constructed based on the best configuration 

of the hyper-parameters. Then, these LDSMs were utilized to substitute the exact function 

evaluations within the optimisation loop of the Limited-memory Broyden–Fletcher–Goldfarb–
Shanno (L-BFGS) algorithm for global optimisation. For this, the maximum function evaluations 

were restricted to ૚૙૙૙ ×  A total of ૜૙ runs of L-BFGS were performed for each LDSM by .ࡰ

varying the starting position − initial guess. The resulting optimum in each of these ૜૙ runs was 

plugged into the test function to achieve the optimal function value. After this procedure, the 

LDSMs were compared based on two aspects. Firstly, the median absolute difference of the 

globally optimal function value with the proposed optimal function values based on ૜૙ runs of 

global optimisation. This was done for each of the ૠ૛૙ cases. The second aspect to compare the 

LDSMs was the median absolute difference of the proposed optimums with the global optimum 

based on ૜૙ runs − the median absolute difference of the globally optimal point on the search 

space with the optimal points proposed by the LDSM. Together, these two aspects were utilized 

to make a comprehensive analysis on the performance of the LDSMs with respect to the criterion 

of global optimality. The flowchart of the entire experimental setup is provided in Figure 1 for 

clarification. 

 

 
Figure 10. Flowchart of the experimental setup. Each step of the process is shown in grey 

rectangles. The central rectangles indicate the hyper-parameter optimisation loop based on the 

modeling accuracy of the surrogates. 

 

 

 

 



 

 

 

 

 

 

 

6.1.6 Results 

 

Graphs illustrating the modeling accuracy of the LDSMs are shared in Figure 11 and Figure 12. 

Both figures contain a total of nine subplots each based on three distinct values of ࡰ and ࡸ. Each 

subplot contains ten bar charts corresponding to the ten test functions. Furthermore, each bar chart 

shares the RMAE for the four LDSMs based on the DRTs. From Figure 11 and Figure 12, it was 

observed that the LDSMs based on AEs achieved the highest modeling accuracy, i.e., lowest 

RMAE values, in ૚૜૛/ૠ૛૙  cases. This was clearer to notice for ࡰ ∈ {૞૙, ૚૙૙} , and ࡸ ∈{ ૙. ૠࡰ, ૙. ૝ࡰ}. In most of the remaining cases, the RMAE values were analogous, though there 

were some exceptional cases where the LDSMs based on other DRTs performed better. From these 

figures, it was also observed that the LDSMs performed likewise for both modeling techniques. 

 

 
Figure 11. Modeling accuracy of the low dimensional Kriging surrogates for all test cases is 

presented. The test cases were defined on combinations of ten test functions, four dimensionality 

reduction techniques and three distinct values for D and L each. 



 

 

 

 

 

 
Figure 12. Modeling accuracy of the low dimensional Polynomial surrogates for all test cases is 

presented. The test cases were defined on combinations of ten test functions, four dimensionality 

reduction techniques and three distinct values for D and L each. 

 
Figure 13. Median absolute difference of the globally optimal function values with the proposed 

optimal function values for all test cases based on Kriging surrogates is presented. The test cases 

were defined on combinations of ten test functions, four dimensionality reduction techniques and 

three distinct values for ܦ and ܮ each. 

 



 

 

 

 

 

 
Figure 14. Median absolute difference of the globally optimal function values with the proposed 

optimal function values for all test cases based on Polynomial surrogates is presented. The test 

cases were defined on combinations of ten test functions, four dimensionality reduction 

techniques and three distinct values for ܦ and ܮ each. 

 
Figure 15. Median absolute difference of the global optimum with the proposed optimum for all 

test cases based on Kriging surrogates is presented. The test cases were defined on combinations 

of ten test functions, four dimensionality reduction techniques and three distinct values for D and 

L each. 



 

 

 

 

 

 

 

 
Figure 16. Median absolute difference of the global optimum with the proposed optimum for all 

test cases based on Polynomial surrogates is presented. The test cases were defined on 

combinations of ten test functions, four dimensionality reduction techniques and three distinct 

values for D and L each. 

 

Next, the results concerning the criterion of the global optimality are reported. For this, the median 

absolute difference of the globally optimal function values with the proposed optimal function 

values is reported in Figure 13 and Figure 14. Both figures contain a total of nine subplots each 

based on three distinct values of � and �. Each subplot contains ten bar charts corresponding to 

the ten test functions. Furthermore, each bar chart shares the median absolute difference (lower is 

better) of the globally optimal function values with the proposed optimal function values. From 

Figure 13 which depicts these results for Kriging, it was observed that PCA, KPCA and VAEs 

performed similarly in most cases, whereas AEs performed poorly. The performance of the AEs 

especially deteriorated for � = ૚૙૙ and � =  ૙. ૚�. In the majority of the remaining cases, PCA 

performed better than the other DRTs. In the case of Polynomials in Figure 14, all four DRTs 

performed likewise in most cases except for � = ૙. ૚�, where AEs performed better than the rest 

in ૚૞/૜૙ cases. 

 

Similarly, plots depicting the median absolute difference (lower is better) of the global optima with 

the proposed optima for all ૠ૛૙ cases are provided in Figure 15 and Figure 16. In Figure 15, AEs 

and VAEs performed poorly, whereas PCA performed better in most cases. In Figure 16, the 

LDSMs performed similarly in most cases except ࡸ = ૙. ૚ࡰ. 

  



 

 

 

 

 

6.1.7 Conclusion 

 

This section of the report presents some of the most important details from our research in ECOLE, 

which empirically evaluated and compared four of the most important DRTs for efficiently 

constructing the LDSMs. The DRTs discussed were PCA, KPCA, AEs and VAEs. The comparison 

was made on the basis of the quality assessment of the corresponding LDSMs on a diverse range 

of test cases. There were a total of 720 test cases based on the combinations of ten test functions, 

four DRTs, two modeling techniques and three distinct values for D and L each. Furthermore, the 

quality assessment of the LDSMs was based on two criteria: modeling accuracy and global 

optimality. Based on the observations so far, the following conclusions can be drawn: 

 

• The LDSMs based on AEs had the highest modeling accuracy in ૚૜૛/ૠ૛૙ cases. In most 

of the remaining cases, the modeling accuracy of the LDSMs was comparable. This 

demonstrated the efficacy of all four DRTs and provided evidence to suggest AEs as the 

most competitive DRT in terms of modeling accuracy. However, future research would be 

necessary to validate this on more complex cases, e.g., real-world applications and 

optimisation under uncertainty.  

• In terms of the global optimality, the LDSMs based on PCA performed better than the 

others in most cases for Kriging. This aspect could be verified from Figure 13 and Figure 

15. For LDSMs based on Polynomials, the performance on this criterion was comparable 

in most cases. 

 

Although a comprehensive analysis on the performance of the LDSMs is provided, there are a few 

limitations to discuss. Firstly, the discussion focused on unconstrained, noiseless, single-objective 

optimisation problems. Therefore, the results cannot be generalized to more complex cases. 

Secondly, the study did not focus on the size of the training sample size which can be crucial in 

many cases. It is pertinent to maintain that this was infeasible to include and was left for future 

work. Based on these rationales, further work is necessary to validate these findings on more 

complex cases, e.g., multiple-objectives, optimisation under uncertainty, constraint handling and 

real-world applications. 

  



 

 

 

 

 

7. Summary and Outlook 
  
In conclusion, we find that we can design search operators as inductive biases for evolutionary 
algorithms by keeping statistics about the behavior of the operators. A key problem however still 
lies in harnessing them for high-dimensional problems and investigating their utility in application 
scenarios.  At last, one ideally wants to adapt the operators for a given problem. Thus, it would be 
desirable to hybridize them with a form of self-adaption as found in many modern algorithms  [20]. 
Our findings also indicate the usefulness of Autoencoders and Principal Component Analysis for 
constructing the low dimensional surrogates. In particular, Autoencoders perform excellently in 
terms of modeling accuracy, whilst Principal Component Analysis produce best results with 
respect to global optimality. Further research must be invested to validate these findings on more 
complex cases. 
  



 

 

 

 

 

Bibliography 
 

[1]  T. T. H. Dinh, T. H. Chu and Q. U. Nguyen, "Transfer learning in genetic programming," in 
2015 IEEE Congress on Evolutionary Computation (CEC), 2015.  

[2]  S. Friess, P. Tiňo, S. Menzel, B. Sendhoff and X. Yao, "Learning transferable variation 
operators in a continuous genetic algorithm," in 2019 IEEE Symposium Series on 
Computational Intelligence (SSCI), 2019.  

[3]  S. Friess, P. Tiňo, S. Menzel, B. Sendhoff and X. Yao, "Representing Experience in 
Continuous Evolutionary optimisation through Problem-tailored Search Operators," in 
2020 IEEE Congress on Evolutionary Computation (CEC), 2020.  

[4]  A. T. W. Min, Y.-S. Ong, A. Gupta and C.-K. Goh, "Multiproblem surrogates: Transfer 
evolutionary multiobjective optimization of computationally expensive problems," IEEE 
Transactions on Evolutionary Computation, vol. 23, p. 15–28, 2017.  

[5]  M. Jiang, Z. Huang, L. Qiu, W. Huang and G. G. Yen, "Transfer learning-based dynamic 
multiobjective optimization algorithms," IEEE Transactions on Evolutionary Computation, 
vol. 22, p. 501–514, 2017.  

[6]  S. J. Louis and J. McDonnell, "Learning with case-injected genetic algorithms," IEEE 
Transactions on Evolutionary Computation, vol. 8, p. 316–328, 2004.  

[7]  B. Koçer and A. Arslan, "Genetic transfer learning," Expert Systems with Applications, vol. 
37, p. 6997–7002, 2010.  

[8]  L. Feng, Y.-S. Ong, S. Jiang and A. Gupta, "Autoencoding evolutionary search with 
learning across heterogeneous problems," IEEE Transactions on Evolutionary 
Computation, vol. 21, p. 760–772, 2017.  

[9]  M. Jiang, Z. Wang, L. Qiu, S. Guo, X. Gao and K. C. Tan, "A fast dynamic evolutionary 
multiobjective algorithm via manifold transfer learning," IEEE Transactions on 
Cybernetics, 2020.  

[10] Z. Wang, H. Hong, K. Ye, M. Jiang and K. C. Tan, "Manifold Interpolation for Large-Scale 
Multi-Objective Optimization via Generative Adversarial Networks," arXiv preprint 
arXiv:2101.02932, 2021.  

[11] S. J. Pan, I. W. Tsang, J. T. Kwok and Q. Yang, "Domain adaptation via transfer component 
analysis," IEEE Transactions on Neural Networks, vol. 22, p. 199–210, 2010.  

[12] G. Ruan, L. L. Minku, S. Menzel, B. Sendhoff and X. Yao, "Computational Study on 
Effectiveness of Knowledge Transfer in Dynamic Multi-objective Optimization," in 2020 
IEEE Congress on Evolutionary Computation (CEC), 2020.  

[13] B. Da, A. Gupta and Y. Ong, "Curbing Negative Influences Online for Seamless Transfer 
Evolutionary Optimization," IEEE Transactions on Cybernetics, vol. no. 99, pp. 1-14, 
2018.  

[14] J. Zhang, W. Zhou, X. Chen, W. Yao and L. Cao, "Multisource Selective Transfer 
Framework in Multiobjective Optimization Problems," IEEE Transactions on Evolutionary 
Computation, vol. 24, p. 424–438, 2019.  

[15] A. T. W. Min, R. Sagarna, A. Gupta, Y.-S. Ong and C. K. Goh, "Knowledge transfer 



 

 

 

 

 

through machine learning in aircraft design," IEEE Computational Intelligence Magazine, 
vol. 12, p. 48–60, 2017.  

[16] Y. Jin, H. Wang, T. Chugh, D. Guo and K. Miettinen, "Data-driven evolutionary 
optimization: An overview and case studies," IEEE Transactions on Evolutionary 
Computation, vol. 23, p. 442–458, 2018.  

[17] A. W. Tan, R. Sagarna, A. Gupta, R. Chandra and Y. S. Ong, "Coping with data scarcity in 
aircraft engine design," in 18th AIAA/ISSMO Multidisciplinary Analysis and Optimization 
Conference, 2017.  

[18] K. Swersky, J. Snoek and R. P. Adams, "Multi-task bayesian optimization," in Advances in 
neural information processing systems, 2013.  

[19] P. Larrañaga and J. A. Lozano, Estimation of distribution algorithms: A new tool for 
evolutionary computation, vol. 2, Springer Science & Business Media, 2001.  

[20] N. Hansen, "The CMA evolution strategy: a comparing review," in Towards a New 
Evolutionary Computation, J. A. Lozano, P. Larrañaga, I. Inza and E. Bengoetxea, Eds., 
Springer, 2006, p. 75–102. 

[21] T. M. Mitchell, The need for biases in learning generalizations, Department of Computer 
Science, Laboratory for Computer Science Research …, 1980.  

[22] J. B. Losos, The Princeton guide to evolution, Princeton University Press, 2017.  
[23] T. Bäck, G. Rudolph and H.-P. Schwefel, "Evolutionary programming and evolution 

strategies: Similarities and differences," in In Proceedings of the Second Annual 
Conference on Evolutionary Programming, 1993.  

[24] L. Devroye, Non-Uniform Random Variate Generation, 1st edition ed., Springer-Verlag 
New York, 1986.  

[25] N.-B. Heidenreich, A. Schindler and S. Sperlich, "Bandwidth selection for kernel density 
estimation: a review of fully automatic selectors," AStA Advances in Statistical Analysis, 
vol. 97, p. 403–433, 2013.  

[26] D. Simon, Evolutionary optimization algorithms, John Wiley & Sons, 2013.  
[27] G. Celeux, S. Frühwirth-Schnatter and C. P. Robert, "Model selection for mixture 

models—perspectives and strategies," Handbook of mixture analysis, p. 121–160, 2018.  
[28] S. Ullah, D. A. Nguyen, H. Wang, S. Menzel, B. Sendhoff and T. Bäck, "Exploring 

Dimensionality Reduction Techniques for Efficient Surrogate-Assisted Optimization," in 
2020 IEEE Symposium Series on Computational Intelligence (SSCI), 2020.  

[29] N. Hansen, A. Auger, R. Ros, O. Mersmann, T. Tušar and D. Brockhoff, "COCO: A 
platform for comparing continuous optimizers in a black-box setting," Optimization 
Methods and Software, p. 1–31, 2020.  

[30] S. Ullah, H. Wang, S. Menzel, B. Sendhoff and T. Back, "An empirical comparison of 
meta-modeling techniques for robust design optimization," in 2019 IEEE Symposium 
Series on Computational Intelligence (SSCI), 2019.  

[31] T. Bäck, Evolutionary algorithms in theory and practice: evolution strategies, evolutionary 
programming, genetic algorithms, Oxford university press, 1996.  

 


	Executive summary
	Major Achievements
	1. Introduction
	2. Background
	3. Instance-based Transfer Approaches
	4. Model-based Transfer Approaches
	5. Inductive Biases in Search-based Optimization
	5.1. Analysis of Operators and Algorithms
	5.2. Extracting Knowledge from Evolutionary Searches
	5.3. Extension of Candidate Algorithms
	5.4. Techniques for Constructing Search Operators
	5.5. Properties of the Retrieved Distributions
	5.6. Hyperparameter Optimization and Model Selection
	5.7. Effectiveness of the Learned Operators

	6. High Dimensional Surrogate-Assisted Optimisation
	6.1. Comparison of Dimensionality Reduction Techniques

	7. Summary and Outlook
	Bibliography

