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Executive Summary 
Engineers intuitively exploit their experience to address challenging optimization problems during 

the development of new products. However, new optimization instances may lack an intuitive 

synergy with similar problems, which other design teams encountered in the past, e.g., current 

designs have different parameterizations or resolutions compared to past results, or different 

performance metrics had been used. Therefore, knowledge transfer in optimization is challenging 

and often performed in a non-systematic fashion. In work package WP1 of the ECOLE project, 

we research and develop techniques to learn novel representations of 3D designs that foster 

knowledge transfer in optimization and utilize these representations towards man-machine 

cooperative shape-generative tasks. Our proposed techniques learn domain-agnostic design 

representations directly from computer aided engineering (CAE) data, which allows us to transfer 

features between designs assigned to different problems and to sample the design population to 

address user preferences or increase the population diversity.  

In this report, we present our methods and software in detail, which we developed for WP1, and 

propose a framework consisting of pre-processing and optimization stages. In the pre-processing 

stage, our framework includes methods for sampling 3D point clouds, training, benchmarking, and 

applying deep-generative models, where we learn a notion of experience from benchmark CAE 

data in an offline fashion. In the optimization stage, we apply the shape-generative models and 

explore the properties of the learned representations to train surrogate models, to initialize the 

populations of evolutionary algorithms online in a smart way, and to transfer knowledge in multi-

task optimization scenarios. We finally provide details on the technical implementation of the 

algorithms, which includes requirements, usage, licensing, and deployment of our software 

components and tools.  

Our code is available online at https://github.com/ECOLE-ITN/GDL4DesignApps. 

Scientific Achievements 
We summarize the scientific achievements described in this report in the following table of 

research questions and short answers. 

 

Research questions Discussion 

What are the advantages of 3D point cloud 

autoencoder approaches with respect to other 

data-driven design representations? 

Autoencoders allow more degrees of freedom 

to learn design features than data-driven 

techniques based on structured data. In 

addition, autoencoders also enable generative 

design with topology changes in contrast to 

traditional design modification methods 

applied in industry, like e.g., shape morphing 

techniques. 

How do autoencoder-based geometric 

representations address knowledge-transfer 

challenges in design optimization? 

Autoencoders learn a domain-agnostic 

representation, which performs as a 

mathematical basis to model and transfer 

properties for a wide range of domains. 

How can geometric deep learning architectures 

exploit the engineering experience embedded 

in handcrafted geometric representations? 

Deep learning architectures utilize historical 

design data for learning a compact 

representation. Through 3D point cloud pre-
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processing, existing design data is unified and 

therefore, allows to combine various shape 

source data, which usually has been generated 

with multiple tools, such as shape morphing 

methods, spline-based methods or shape 

boundary representations.  

How is experience given as design and 

performance data from past optimizations 

captured and utilized in current engineering 

optimization tasks using (variational) 

autoencoders? 

By learning surrogate models based on the 

latent representations of the (variational) 

autoencoders we build accurate multi-layer 

perceptron models offline that map 3D point 

clouds to geometric and engineering 

performance metrics and allow an efficient 

online utilization in engineering design 

optimization tasks.  

How to increase the amount of information in 

the learned latent space of autoencoders to 

improve the quality of metamodels for 

surrogate-assisted design optimizations? 

By enforcing the autoencoder to learn implicit 

information on the global point cloud 

structure, e.g., by ordering the points, the 

information content in the latent space is 

increased. 

How to exploit data-driven variational 

autoencoder representations for improving the 

convergence in multi-criteria decision 

making? 

We propose a “warm start” based on optimized 

designs for the objectives of interest and 

exploit the linear interpolation in the 

variational autoencoder latent space to address 

the user preferences. 

What is the advantage of experience transfer 

through autoencoder representations in 

engineering design optimization? 

Compact representations based on 

autoencoders offer efficient parameterizations 

for multiple tasks, which enable the transfer of 

latent features during optimization to foster 

commonality in the optimal designs for 

increased cost efficiency. 

How can efficient learning-driven systems 

strengthen automated design optimization 

frameworks in the context of engineering 

development?  

By combining learning point cloud data and 

deformable mesh prototypes in a novel deep 

neural network architecture (Point2FFD) we 

enable the generation of realistic designs that 

are directly suitable for engineering simulation 

in an automated design optimization 

framework reducing overall optimization 

runtime. 
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1. Introduction 
 

Engineers intuitively utilize experience to set up new optimization problems targeting faster 

convergence and solutions with higher quality. However, due to the increasing complexity of 

optimization scenarios in the automotive industry, transferring settings between optimization 

problems is often a challenging process. Furthermore, considering the experience of a single 

engineer may over-constrain the range of optimum designs, hindering design exploration. Hence, 

in the Experience-based Computation: Learning to Optimise (ECOLE) project, we address these 

challenges by proposing a novel and smart engineering optimization framework, which learns a 

notion of experience from optimization data histories and exploits said experience in similar, yet 

more challenging, current optimization problems in the automotive domain (Figure 1). 

 

 
Figure 1– Vision for experience-based multi-criteria optimization in the automotive domain. 

In this report, we summarize our research activities and results with respect to work package WP1, 

which focuses on multi-domain vehicle optimization improved by the integration and exploitation 

of experience, which is hidden in data from past product development cycles. Thus, we link 

scientific questions to industrial, often multi-domain problems that add a practical perspective to 

our research tasks. A systematic approach to model and transfer the experience in industrial 

optimization scenarios has the potential to improve the performance of new optimization instances 

in various aspects. For example, since the complexity of products increases over the development 

process, learning design features and simulated performance of designs allows engineers to 

sample, combine, and assess the performance of novel solutions faster and more accurately, which 

accelerates the design process. From a long-term perspective, computational experience-based 

models may cooperate with less experienced engineers to solve complex optimization problems 

and dial down the effects of team turnover by transferring knowledge from machine to humans 

more efficiently. 

 

The parameterization of 3D geometries, also called design representation, is central for knowledge 

and experience transfer in optimization problems. The design features provide a mathematical 

basis to analyze different optimization results, to generate performance prediction models and to 

transfer solutions between different problems. Since engineers often manually select the design 

features based on their expertise and the domain of the optimization, design parameterizations 
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differ from one optimization to another, even between problems that belong to the same domain. 

In addition, representations change over time due to higher fidelities of models and adaptation of 

parameters based on product visions of design teams. Thus, transferring solutions and features 

from one optimization to another is not straightforward, particularly due to the lack of clear overlap 

and mapping between design spaces of different problems. However, since most of the design 

processes currently rely on virtual models and computer simulations developed with CAE tools, 

the design of multiple products generates sufficient digital data for machine learning algorithms to 

learn design features and novel shape-generative models that are transferrable to multiple 

problems. 

 

Mining design features from CAE data is challenging due to the sparse, unstructured, and high-

dimensional nature of the data samples. Particularly for computer simulation purposes, engineers 

discretize 3D shapes into polygonal meshes that comprise a permutation-invariant set of vertices 

connected by straight edges, which is an unsuitable input space for classical machine learning 

algorithms. With the advances on storage technology and increasing availability of powerful 

graphic processing units (GPUs), Bronstein et al. [1] introduced a novel class of algorithms called 

geometric deep learning, which addresses these challenges and extends the application of machine 

learning to unstructured data. Among the methods in this class, deep-generative models, like 

autoencoders, learn compact latent representations of geometric data, e.g., 3D point clouds. 

Furthermore, since these architectures learn exclusively from geometric data, the latent space of 

the autoencoders is domain-agnostic, which allows the transfer of geometric features between 

shapes of different nature and to model performance metrics related to different domains. Hence, 

our approach (Figure 2) exploits geometric deep learning methods to learn design features from 

existing historical CAE data in an offline fashion and, thus, to also learn a notion of the users’ 
expertise embedded in the data. Furthermore, the learned representations enable the knowledge 

transfer during the solution of concurrent optimization problems online, e.g., by sharing solutions 

described in a common design space. 

 

 
Figure 2 – Application scenario of design optimization with experience transfer. 

For developing such a framework, we divided our approach into modules. For pre-processing 

(Section 2) the CAE data and learning the representations, we proposed three deep learning 

architectures, which learn compact design representations from 3D point cloud data in an offline 

and unsupervised fashion. Also in the pre-processing phase, we propose a feature visualization 

technique, which identifies the mapping between the learned variables and regions in the 
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geometries, such that the users can decide on which parameters to modify and during the 

optimizations and transfer between different problems. After the pre-processing we applied the 

networks in an online fashion in four real world-inspired vehicle design and optimization 

problems: The analysis of surrogate models based on latent space representations, a multi-

objective optimization, a multi-task optimization and a single-objective optimization problem 

(Section 3). A comprehensive description of our developed software tools and components 

concludes the report (Section 4). 

 

2. Pre-processing Stage 
 

The main objectives of the pre-processing stage are to prepare the CAE data for the training and 

testing of our shape-generative models, and to enable the visualization of network features. For 

these algorithms, we assume that an existing set of geometries represented as polygonal meshes is 

available, in a data format that allows us to access, sample and modify the vertices of the mesh 

into 3D point clouds. 

2.1. Geometric Data 

2.1.1. Benchmark Data Set  
As baseline data set, we utilize the ShapeNetCore repository [2], which comprises shapes 

represented in a standard 3D image format (OBJ), i.e., polygonal meshes with texture, colors, and 

other rendering-related information. ShapeNet and ShapeNetCore are large 3D shape repositories, 

which are used as standard benchmark data sets for algorithm development and benchmarking. 

The dimensions of the shapes are rescaled to the space [Ͳ,ͳ]ଷ in a shape-independent fashion 

preserving the aspect ratio between axes. Furthermore, the meshes in the repository are non-

isomorphic and have different quality levels, since the authors collected 3D models from multiple 

sources. 

2.1.2. Point Cloud Sampling  
We sample the point clouds from the polygonal meshes according to three techniques: Random 

uniform sampling (RUS), high-pass graph filter (HPF) and shrink-wrapping meshing (SWM). We 

explored the first two techniques in [3], where we assessed the scalability of point cloud 

autoencoder architectures to engineering CAE models, as also extensively reported in the ECOLE 

Deliverable 1.2 [4], which focused on our main findings and evaluations of our (variational) 

autoencoders. We introduced the SWM approach in [5], where we generated organized point 

clouds that have enabled us to quickly generate simplified mesh prototypes for engineering 

simulations.  

 

In the RUS approach, we sample the vertices of a mesh assuming a uniform random probability. 

Hence, for a polygonal mesh with N vertices, any vertex has the probability (N)-1 of being sampled. 

Also, the method is feature-agnostic, i.e., it neglects any information related to the distribution of 

points over the surface of the shape. Differently, the HPF approach assigns higher probability to 

points close to high-frequency shape transitions, e.g., edges. To calculate the sampling probability, 

we apply the transition matrix ܣ as graph shift operator (Eq. 1), which depends on the degree 
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matrix ܦ and adjacency matrix ܹ. The sampling probability of a vertex ݔ௜ is proportional to the 

magnitude of the response ℎ௚ of the operator (Eq. 2). Since the operator indicates the difference 

between the position of a point and the convex combination of its neighbors, sharper features, e.g., 

edges, yield responses with higher magnitude and, thus, lead to higher sampling probability 

(Figure 3). 

ܣ  = ,௜ݔଵܹ (1) ℎ௚ሺ−ܦ  ሻܣ = ௜ݔ  − ∑ �∋௝௝ݔ௜,௝ܣ  
(2) 

 

 
Figure 3 – Application of RUS and HPF sampling strategies on a regular octahedron mesh.  

Brighter colors indicate higher sampling probability. 

The shrink-wrapping meshing (SWM) algorithm works according to a different principle. The 

algorithm first fits an initial mesh, which we in our experiments assume as a rectangular box, to 

the dimensions of the target geometry. In a second step, the initial mesh is iteratively shrunk by 

approximating each vertex ݔ௜ to its nearest vertex ݔ௡,௜ in the target mesh based on the distance 

between points and a step size α (Eq. 3). Since the shrinking may generate clusters of points in 

less dense regions of the target mesh, in a last step, the algorithm relaxes the generated mesh with 

a Laplacian algorithm [6], improving the distribution of the points (Figure 4). 

௜�+ଵݔ  = �௜ݔ + �௡,௜ݔ)ߙ −  ௜�) (3)ݔ

 

 
Figure 4 – Visualization of the point clouds obtained at intermediate and final steps with SWM applied to the mesh of a regular 

octahedron. On the right, the mesh reconstructed based on the initial mesh and point ordering. 

By utilizing the same initial mesh for a set of shapes, SWM yields an organized set of 3D point 

clouds, where the points are ordered according to the vertex assignment of the mesh. Learning on 

sets of organized point clouds has two main advantages: First, since the point-correspondence 

between point clouds is known, it allows us to simplify the calculation of shape reconstruction 
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losses, which increases the computational efficiency of the training task. Second, organizing the 

points according to the graph vertex assignment allows us to quickly prototype meshes from the 

point clouds generated by our proposed models, since we can directly assign the predicted points 

to the corresponding vertices of the initial mesh [5], [7].  

 

For our implementations, we integrated the three sampling techniques into a single algorithm 

(Algorithm 1). We assume that a data set of polygonal meshes is available, as well as the sampling 

probability p of the vertices for each geometry and the required size of the output point clouds N. 

We assume that any additional pre-processing was performed beforehand, e.g., calculating the 

point sampling probability p and shrink-wrapping meshing, since these tasks are time-consuming 

and we only need to perform them once. For cases where meshes have different sizes, the algorithm 

verifies for each mesh whether the required point cloud size is larger than the number of available 

vertices. In this case, the algorithm enables the replacement (repetition) of samples, which 

performs as padding 2D images with black pixels for image processing tasks. If the meshes in the 

set are isomorphic and have size N, as obtained with SWM, the algorithm selects all the vertices 

according to the ordering assigned in the graph. For machine learning tasks, we group the point 

clouds in tensors ܶሺܾ, ܰ, ͵ሻ, where b is the batch size. 

 
Algorithm 1 – Pseudo-algorithm of the random uniform sampling technique generalized to meshes with random number of vertices. 

In the algorithm, V and E are the mesh vertices and edges, respectively, N the number of required points and p the point sampling 

probability. 

ALGORITHM: Point Cloud Sampling 

INPUT:  Polygonal mesh ሺܸ,  ሻ, N, pܧ

1: IF N > size(V): 

2:  ind = sample N indices in [Ͳ, ሺܸሻ݁ݖ݅ݏ − ͳ], with replacement and 

probability distribution p 

3: ELSE IF N < size(V): 

4:   ind = random N indices in [Ͳ, ሺܸሻ݁ݖ݅ݏ − ͳ], without replacement and 

probability distribution p 

5: ELSE 

6:  ind = [Ͳ, … , ܰ − ͳ] 
7: END 

OUTPUT:  3D point cloud S = V[ind] 

2.2.  Deep-generative Models 
 

For learning the representations from the sampled data, we proposed three deep-neural networks 

based on point cloud autoencoders. 

2.2.1. 3D Point Cloud Autoencoder (PC-AE) 
The architecture (Figure 5) is based on the autoencoder proposed in [8], which we utilized in design 

optimization problems in [5], [7], [9] and reported in our previous ECOLE Deliverable 1.2 [4]. 

The network comprises an encoder that compresses the input data into a latent space ܼ, and a 

decoder, which generates 3D point clouds from the representations in the latent space. The encoder 
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comprises five 1D convolutional layers, followed by a max-pooling operator, which yields the 

latent representations. The decoder comprises three fully connected layers and outputs the 

Cartesian coordinates of the points. All layers are activated with rectified linear units (ReLU), 

apart from the last convolutional layer, which is activated with a hyperbolic tangent function, and 

the output layer, which is activated with a sigmoid function. Hence, the latent variables are bound 

to the space [−ͳ,ͳ]��, where ܮ௓ is the dimensionality of the latent space, and the coordinates of 

the output point to the space [Ͳ,ͳ]ଷ. 

 

 
 

Figure 5 – Architecture of the 3D point cloud autoencoder. 

We train our PC-AE by optimizing the network weights to minimize the shape reconstruction 

losses. In [8], [10], the authors utilize the Chamfer Distance (CD) [11] as loss function to overcome 

the lack of correspondence between points on different point clouds. Since shrink-wrapping 

organizes the data for training the autoencoder, it allows us to utilize the mean-squared distance 

(MSD) between input and predicted shapes ( ௜ܵ and ܵ ̃௜, respectively) as loss function (Eq. 4), which 

is computationally more efficient and generates smoother shapes [7], [5]. ܦܵܯ( ௜ܵ, ܵ̃௜) = ͳܰ ௝ݔ‖∑ − �௝‖ଶݔ̃
௝=ଵ  (4) 

2.2.2. 3D Point Cloud Variational Autoencoder (PC-VAE) 
The architecture of the variational autoencoder (Figure 7) is analogous to the PC-AE architecture. 

The major difference is that, after the max-pooling, the latent layer is divided into two parts: a 

mean vector μ and a standard deviation vector σ with a sigmoid activation function. Hence, the 

latent representation z is stochastic in nature as it is sampled from the encoder’s output distribution 
(μ, σ), from which the decoder generates a 3D point cloud. For training our PC-VAE, we minimize 

a loss function with two terms (Eq. 5): The first term is defined by the difference between the input 

and reconstructed point cloud, and the second is the Kullback-Leibler (KL)-divergence loss (Dkl) 

between the learned latent distribution and an assumed prior normal distribution. In [12], we utilize 

the Chamfer Distance (CD) to measure the reconstruction loss Lrecon, where ௜ܵ and ܵ̃௜ are the input 

and reconstructed output point clouds. The hyper-parameters ߙଵ and ߙଶ to balance the 

reconstruction and KL-divergence for PC-VAE-CD were tuned by grid search to ߙଵ=250 and ߙଶ=0.001. ܮ�஺ாሺ ௜ܵ, ܵ̃௜ሻ = ௘௖௢௡�ܮଵߙ  + ௞௟ܦଶߙ  
(5) 
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Figure 6 – Architecture of the 3D point cloud variational autoencoder. 

However, since the shrink-wrapping algorithm organizes the input data as explained above, in 

[13], we trained the PC-VAE with MSD (Eq. 4) as reconstruction loss function. Hence, we 

optimized the hyper-parameters ߙଵ and ߙଶ for PC-VAE-MSD and selected the values of ߙଵ=1000 

and ߙଶ=0.001 for the hyper-parameters as they provide an acceptable trade-off between 

reconstruction accuracy and divergence in the latent space. 

 

Both, PC-AE and PC-VAE result in 3D point cloud representations, which have shown promising 

results in shape-generative tasks [8], [9], [12]. However, engineering simulation algorithms often 

require 3D shapes represented as polygonal meshes, e.g., for computing car aerodynamic 

performance or structural stiffness. Since automated meshing on 3D point cloud data is still 

challenging, we have proposed a novel deep-learning architecture, which learns to compress 3D 

point clouds into latent representations but generates polygonal meshes based on a set of 

simulation-ready mesh templates. 

2.2.3. Point2FFD: A Novel Deformation-based Deep-generative Model 
Mesh reconstruction on 3D point clouds is an ill-posed problem and a well-known challenge in 

computer graphics. Current mesh reconstruction techniques based on 3D point cloud data still 

require manual tuning and verification, which is undesired in automated shape-generative 

pipelines, e.g., shape optimization problems. In the literature, deep-generative networks address 

this challenge by learning to triangulate points [14], by recursive mesh deformations [15], or even 

by learning on different types of input data, such as 2D images [16] and segmented 3D shapes 

[17]. However, these models still require manual work for fine tuning post-processed models by 

augmenting the training data and handling the shape-generative process as an isolated task. 

 

We have proposed Point2FFD to address these challenges and, more specifically, the state-of-

readiness of the models generated by point cloud autoencoders. The network builds upon the PC-

AE architecture and comprises two parts: An encoder and a shape-generative model (Figure 7). 

The encoder follows the architecture of the PC-AE and compresses the point cloud data to a low-

dimensional latent space. From the latent representation, the network generates shapes in two 

steps. First, the network selects a mesh template from a batch of available simulation-ready models 

parameterized with free-form deformation (FFD) based on the similarity of the template to the 

design represented in the latent space. Second, the network predicts the deformation of the FFD 
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lattice and applies the deformation to the selected template. Thus, the network generates meshes 

suitable for simulations, as with FFD, but also with different topologies, as obtained with PC-AE. 

 

 
 

Figure 7 – Point2FFD architecture and flow of information for training the network. 

The architecture of the encoder is identical to the encoder of the PC-AE. However, the network 

generates the latent representation ܼ by adding Gaussian noise to the output of the max-pooling 

operator ܼ଴ (Eq. (6). Our motivation is to increase the robustness of the shape-generative model 

without adding the Kullback-Leibler (KL) divergence to the loss function, as required for the PC-

VAE. Hence, for training the model, we set ߛ = ͳ and �ଶ > Ͳ, where the standard deviation �ଶ 

depends on the desired level of noise. 

 ܼ = ܼ଴[ͳ + ,ߤሺܰߛ �ଶሻ] (6) 

Following the latent space, the network generates 3D shapes by selecting and deforming 

simulation-ready template models. We define a template as a 3D polygonal mesh, without artifacts 

and parameterized with standard FFD [18] (Figure 8). Mathematically, the templates are 

represented as pairs (ܤ, ܸ), where B is the matrix with the coefficients of the Bernstein tri-variate 

polynomials and V is the set of non-deformed control points. The coefficients ܾ௔,௣ in B are defined 

by the coordinates (ݔ௔ , ,௔ݕ � ௔ሻ of the mesh vertices and positionݖ = ሺ݅, ݆, ݇ሻ of the control points 

in the lattice, which is assumed to have l, m, n control planes in x-, y- and z-direction, respectively. 

Hence, given a deformation Δܸ of the control points, we obtain the deformed mesh nodes ܵௗ௘௙ 

through ܵௗ௘௙ = ܤ × ሺܸ +  Δܸሻ. 

 

 
 

Figure 8 – Example of a polygonal mesh of a car shape parameterized and deformed using FFD. 
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For selecting the templates, we utilize a multi-layer perceptron (MLP) in one branch of the shape-

generative model. The MLP comprises three layers, where the first two are activated by ReLU and 

the third by a softmax function, which outputs the probability of selecting each of the available 

templates. For the deformation, in a second branch, a decoder with three fully connected layers, 

where only the first two are activated by ReLU functions, predicts the displacement Δܸ of the 

control points of the template FFD lattice. Then, in a last step, the network generates the output 

shape by deforming the selected template based on the predicted displacements using FFD. 

 

The loss function for training Point2FFD comprises two terms (Eq. 7). The first term indicates the 

reconstruction losses between the input shape ܵ ௜ and the reconstructed shape ܵ ̃௜, which we calculate 

using the mean-squared distance (MSD) between corresponding points ሺݔ௝ ,  ௝ሻ (Eq. 4). Since theݔ̃

similarity between geometries improve the quality of the shape matching with FFD [19], we train 

the MLP-classifier to select the templates with highest similarity to the corresponding input shapes. 

The second term (ܦܵܯ�௘௠௣௟�) is the average of the MSD between the input shape ௜ܵ and each 

template ܵ�௘௠௣௟�,௝ , ݆ = ͳ … ݇ weighted by the corresponding selection probabilities �௝  ∈ [Ͳ,ͳ] of 

each prototype. Thus, the second term is minimized by increasing the probability � for the 

prototypes that yield the lowest MSD values (highest similarity). 

 ℒ = )ܦܵܯ ௜ܵ, ܵ̃௜) +  ͳ/݇ ∑ �௝ܦܵܯሺ ௜ܵ, ܵ�௘௠௣௟�,௝ሻ௞
௝=ଵ  (7) 

2.2.4.  Benchmark analysis 
We benchmarked our proposed networks against the point cloud autoencoder introduced in [8] 

named here PC-AE-Achlioptas, which we utilized as reference to design our architectures. We set 

up the networks considering similar hyperparameters and loss functions as reported in [8], [7], [4] 

(Table A 1, Appendix A). Particularly, for the PC-VAE, we set the weights ߙଵ =250 and ߙଶ =1.0E-03 to balance the Chamfer Distance (CD) [11] and KL-divergence in the loss function. 

 

As benchmark scenarios, we considered four data sets that combine the car and airplane classes of 

ShapeNetCore [2] (Table 1). We sampled the shapes using the shrink-wrapping algorithm and we 

considered two point cloud sizes. Hence, the differences in performance from Scenario A to 

Scenario B allow us to assess the scalability of the networks. Also, by learning on data sets with 

multiple classes (Scenario D), we assess the performance of the MLP classifier and the capability 

of the networks to learn fundamentally different geometric features. Since Point2FFD is the only 

model that requires mesh templates, we utilized one template per object class and selected the 

shapes with highest similarity to the mean shape of each class (Figure 9). We parameterized the 

templates using lattices with same configuration: l=16, m=6 and n=6. Regarding the Gaussian 

noise, we set the standard deviation to �ଶ = 9.͹ͲE-03 to ensure 2.5% of noise with 99% 

confidence interval. 
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Table 1 – Scenarios considered for the benchmark analysis of the proposed deep-generative models. In the table, K corresponds 

to the number of utilized templates. 

Scenario Classes Point cloud size K 

A Car 6146 1 

B Car 24578 1 

C Airplane 24578 1 

D Car & Airplane 24578 2 

 

We optimized the networks’ weights using the Adam optimizer [20] for a maximum of 750 epochs. 

We set the algorithm learning rate to �=5.0E-04, and the moments to ߚଵ = Ͳ.9Ͳ0 and ߚଶ = Ͳ.999. 

Furthermore, we randomly divided the data set into 90%/10% partitions for training and testing 

the networks, respectively, and fed the networks gradually with batches of 50 shapes. We trained 

the networks on Scenario A on a machine with two CPUs Intel® Xeon® clocked at 2.10 GHz and 

four GPUs Nvidia® GeForce® RTX2080 Ti with 12 GB each. The experiments for the remaining 

scenarios were performed on a machine with similar CPU and two GPUs Nvidia® Quadro® 

RTX8000 with 48GB each. Each network was trained on a single GPU and with the machines 

under similar computational load. 

 

 

 
 

Figure 9 – Mesh and corresponding point clouds of the shapes utilized as templates for training our Point2FFD architecture. 

We compared the networks based on four criteria: Number of variables, training runtime, and the 

reconstruction losses (CD) on training and test sets (Table 2). The number of variables and runtime 

indicate the computational effort to learn the models. Here, we observe some of the advantages of 

our proposed network. First, comparing the runtime and number of variables required by PC-AE 

and PC-AE-Achlioptas, we conclude that MSD is computationally more efficient than the CD, 

used for the PC-AE-Achlioptas. Second, the number of free (trainable) parameters of Point2FFD 

is invariant to the point cloud size. However, the total size of the network depends on the size of 

the point clouds and number of templates. Since the runtime obtained with Point2FFD and PC-

AE-Achlioptas are comparable, we conclude that our proposed network efficiently processes 

higher-dimensional point clouds, even though it allocates more memory. Finally, we also notice 

that PC-VAE required longer runtime than the other networks, which we expected since PC-VAE 

processes 3D point clouds with more operations. 
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The reconstruction losses indicate the shape-generative capability of the networks. In most of the 

scenarios, Point2FFD achieved at least comparable results to the other models. Particularly, in 

Scenario C, the PC-AE-Achlioptas yielded the lowest reconstruction losses. To verify the results, 

we visually inspected the reconstruction of shapes randomly sampled from the data set (Figure 

10). We observed in the reconstructions that the networks trained with MSD generate smoother 

shapes, however, with less topological differentiation. Yet, since Point2FFD generate shapes based 

on prototypes, the shapes of the airplanes obtained with Point2FFD are more realistic than obtained 

with PC-AE. Also, despite the higher CD values, PC-VAE distinguished the topology of the shapes 

more clearly and yielded point clouds with less noise than the PC-AE-Achlioptas. Therefore, we 

conclude that the networks proposed in the framework of ECOLE improved the shape-generative 

capabilities of the baseline model (PC-AE-Achlioptas), which was used as reference for our 

research. 

 

 

 

Table 2 - Results of the benchmark analysis performed on the four scenarios and selected networks. 

Scenario A: Car class, point cloud size: 6146 points 

Network PC-AE-Achlioptas PC-AE PC-VAE Point2FFD 

Loss function CD MSD ߙଵܦܥ �ܦܵܯ ܦܵܯଶߙ +  �௘௠௣௟�ܦܵܯ +

Free variables 1.83E+06 1.83E+06 1.89E+06 3.92E+05 

Total variables 1.83E+06 1.83E+06 1.89E+06 3.93E+06 

CD training (1.34 ± 0.03)E-04 (9.37 ± 0.57)E-05 (5.59 ± 0.82)E-04 (5.67 ± 0.39)E-05 

CD test (1.34 ± 0.09)E-04 (8.93 ± 1.41)E-05 (5.03 ± 2.62)E-04 (5.52 ± 1.07)E-05 

Runtime 1 h 45 min 19 s 1 h 42 min 24 s 2 h 34 min 2 s 2 h 7 min 21 s 

Scenario B: Car class, point cloud size: 24578 points 

Free variables 6.60E+06 6.60E+06 6.67E+06 3.93E+05 

Total variables 6.60E+06 6.60E+06 6.67E+06 1.45E+07 

CD training (1.00 ± 0.03)E-04 (1.05 ± 0.06)E-04 (4.10 ± 0.79)E-04 (4.04 ± 0.09)E-05 

CD test (1.05 ± 0.11)E-04 (1.03 ± 0.17)E-04 (4.99 ± 3.03)E-04 (4.95 ± 0.99)E-05 

Runtime 4 h 32 min 40 s 3 h 42 min 13 s 6 h 39 min 58 s 4 h 43 min 23 s 

Scenario C: Airplane class, point cloud size: 24578 points 

CD training (8.90 ± 0.27)E-05 (1.47 ± 0.06)E-04 (4.58 ± 0.28)E-04 (1.69 ± 0.06)E-04 

CD test (9.61 ± 1.05)E-05 (1.48 ± 0.19)E-04 (4.62 ± 0.79)E-04 (1.80 ± 0.24)E-04 

Runtime 4 h 29 min 17 s 3 h 42 min 22 s 6 h 31 min 50 s 4 h 35 min 39 s 

Scenario D: Car and airplane classes, point cloud size: 24578 points 

Total variables 6.60E+06 6.60E+06 6.67E+06 2.87E+07 

CD training (1.34 ± 0.05)E-04 (1.43 ± 0.06)E-04 (5.48 ± 0.52)E-04 (1.36 ± 0.11)E-04 

CD test (1.31 ± 0.10)E-04 (1.44 ± 0.18)E-04 (4.26 ± 1.08)E-04 (1.43 ± 0.35)E-04 

Runtime 4 h 31 min 5 s 3 h 43 min 3s 6 h 38 min 27 s 4 h 39 min 53 s 
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Figure 10 – Visualization of shapes randomly selected from the data set and the corresponding reconstructions yielded by the 

benchmarked networks. 

2.3. Feature Visualization 
 

Our feature visualization technique [10] projects the activations obtained at the layers of the 

encoder back onto the corresponding points in the 3D point cloud representation as color maps. 

Since the latent variables are obtained through a max-pooling operator, the visualization of the 

features obtained in the layer immediately prior to the latent space reveals the geometric 

characteristics encoded in the latent variables. As reported in [10], [4], the latent variables indicate 

the occupancy of specific regions in the input Cartesian space, which optimally describe the 

variations between the shapes. Since the visualization technique assumes an encoder with only 1D 

convolutions (point-wise operators), the same technique is also suitable for the PC-VAE and 

Point2FFD networks. 

 

Although unexplored in [10], the feature visualization also allows us to select sub-sets of latent 

variables to constrain shape modifications to specific regions of interest in the shapes. In [7], we 

utilize the feature visualization scheme to select and transfer features between latent 

representations in order to generate crossover shapes, e.g., by transferring a spoiler from a sports 

car to a sedan car (Figure 11). Furthermore, in a multi-task design optimization problem, we also 

show that by enabling the transfer of the same features in the representations of designs assigned 

to different tasks, the optimizer fosters commonality in the optimized shapes, which also indicates 

that the representation learned by the PC-AE is suitable for transferring knowledge between 

different optimization problems. 
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Figure 11 – Example of crossover car shapes generated by transferring features between different latent representations. 

 

3. Applications of Deep-generative Models in Engineering Optimization 
 

In the previous section, we reviewed the methods utilized to process geometric data by training 

shape-generative models and visualizing the learned features. In this section, we demonstrate the 

application of the proposed models in real world-inspired surrogate modelling and design 

optimization problems. For four use cases, we demonstrate the applicability of our (V)AEs  

(1) for surrogate modelling of performance data, which is important for reducing the runtime of 

real-world applications, such as vehicle design optimization, (2) for improving multi-objective 

optimization frameworks by exploiting the interpolation in the latent space of the VAEs, (3) for 

improving multi-task optimization with online exploitation of experience, and (4) for generating 

simulation-ready triangulated meshes for improved vehicle design optimization. 

3.1.  Surrogate Models for Optimization 
 

In early stages of automotive development, engineers estimate the performance of a design based 

on computer simulations, e.g., calculating aerodynamic forces using computational fluid dynamics 

(CFD) simulations. However, in order to achieve a target level of accuracy, these simulations 

require considerable computational effort, which limits the freedom of designers in design 

exploration tasks. To replace expensive function evaluations, it is a common approach to utilize a 

surrogate model to predict the performance of the designs based on the values of the design 

variables. Hence, our objective is to utilize the latent space of our proposed autoencoders (PC-AE 

and PC-VAE) to learn performance metrics calculated on designs utilized to train the architectures. 

 

Previous work on autoencoder-based surrogate models in the chemistry and biology domains 

showed promising results in assessing the characteristics of chemical compounds before 

committing to expensive synthesis processes [21]. However, generating surrogate models for 

automotive design is a more challenging task due to various reasons foremost due to the limited 

availability of training data. Furthermore, since the proposed deep-generative models learn 

exclusively on geometric data, the training algorithm neglects any explicit information related to 

the performance of the designs. Therefore, the relation between the learned latent variables and 

design performance is also unknown a priori, thus configuring the surrogate models to map highly 

nonlinear data, such as aerodynamic performance, becomes also very challenging. Hence, in our 

research in [13], we utilize information-theoretic measures to quantify the information stored in 
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the latent space of different configurations of the PC-AE and PC-VAE with respect to the  

volume ܸ and aerodynamic drag force ܨ� of the shapes. Furthermore, we exploit the generative 

capability of the PC-VAE to augment the training data for a surrogate model to predict both ܸ and ܨ� (Figure 12). We selected the volume due to the low computational cost and due to the similarity 

to the interpretation of the latent variables, and the aerodynamic drag, on which we have higher 

interest due to the capability of the surrogate model to accelerate time-consuming aerodynamic 

design optimization problems. 

 

 
 

Figure 12 – Schematic of the data processing for predicting the performance of 3D designs based on the latent variables and 

using a multi-layer perceptron (MLP). 

3.1.1. Information-theoretic Assessment of the Latent Space 
The information-based analysis of the latent representations indicates the expected quality of 

surrogate models trained on the latent space to map specific target metrics. In our study, we 

compared the latent representation based on the mutual information (MI), which indicates the total 

information stored by a random variable ݔ about another random variable ݕ, regardless of the 

degree of nonlinearity of the relation between ݔ and ݕ. Therefore, the higher the MI, the higher is 

the expected accuracy of the surrogate model trained to predict ݕ based on ݔ. 

 

For the analysis of the latent space, we considered the PC-AE and PC-VAE trained with both, 

Chamfer Distance CD (PC-AE-CD and PC-VAE-CD) and Mean Squared Distance MSD (PC-AE-

MSD and PC-VAE-MSD). As data set, we utilized the car class from ShapeNetCore [2], sampled 

with shrink-wrapping into point clouds with 24578 points. We trained the models with the Adam 

optimizer [20] and the same settings as discussed in the benchmark analysis (Section 2.2.4). We 

calculated the volume and aerodynamic drag force using the shrink-wrapped meshes and CFD 

simulations using the open source solver OpenFOAM® (www.openfoam.com). From the 3500 

shapes, the simulations of 600 samples converged to an expected range of forces, which we used 

for the MI analyses and training the surrogate model. 

 

By analyzing the mutual information (Figure 13), we observe two main differences between the 

models. First, the PC-AE architectures yielded a more even distribution of the MI among the latent 

variables compared to the PC-VAE. Second, the architectures trained with MSD yielded higher 

values of MI, indicating that the loss function also has an influence on the information in the latent 

space. Our main conclusion from the experiment was that the regularization reduces the 

information content in the latent space since it adds a stochastic component to the latent space. On 

the other hand, MSD increases the MI values by forcing the autoencoders to implicitly learn global 

shape information, which is defined by the organization of the point clouds. 
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Figure 13 – Mutual information measured based on the latent variables learned with variations of the PC-AE and PC-VAE.  

The variables V and Fx indicate volume and aerodynamic drag, respectively. 

3.1.2. Generating Surrogate Models for Vehicle Aerodynamics 
Based on the information-theoretic analysis, we generated surrogate models using the latent spaces 

learned by the architectures trained with MSD, which preserve more information in the latent 

space. As surrogate model, we utilized a two-output multi-layer perceptron (MLP) to predict 

simultaneously the volume and aerodynamic drag of the car shapes. The MLP comprises a single 

hidden layer with 10 hidden neurons, which are activated by ReLU and defined based on a five-

fold cross-validation test, and an output layer with two neurons activated by sigmoid functions.  

 

 
Figure 14 – True vs prediction values of the MLPs trained on the latent space of PC-AE and PC-VAE. 

In a first stage, we train the MLP using the Adam optimizer [20] with a learning ratio η=1E-03 for 

a maximum of 1000 epochs. Also, we divide the data set into 85%/15% partitions for training and 

testing, respectively, which we feed to the networks in batches of 50 samples. By analyzing the 

prediction performance (Figure 14), we observe that the MLPs predicted the shape volume with 

more accuracy than the aerodynamic drag, which is expected since the latent variables in both, PC-

AE and PC-VAE, hold more information about the volume as geometric descriptor. For the 
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aerodynamic drag, the MLP trained on the PC-AE latent space (MLP-AE) achieved accuracies 

approximately 13% higher (RMSE = 0.048), but both models present disperse predictions, in 

particular outside the range [0.2, 0.6], which would negatively impact the performance of 

downstream tasks based on the surrogate model. 

 

In order to overcome the limitation of data in the range with the poorest performance, we utilized 

the shape-generative capabilities of the PC-VAE to augment the training data. As the PC-VAE 

learns a shape-generative model that smoothly interpolate and combine design features [12], it 

allows us to sample the latent space in the sparser regions of the data set and generate new realistic 

car shapes to augment the data. This generative process is more efficient than manually modifying 

the 3D meshes and exploits the knowledge stored in the latent space of the PC-VAE, which is one 

of the main advantages of our proposed architecture. Hence, for the purposes of our experiments, 

we augmented the data with additional 300 samples, for which we calculated the latent 

representations with both autoencoders, as well as shape volume and aerodynamic drag. 

 

For assessing the improvement of the MLP accuracy due to the data augmentation, we re-trained 

the MLPs considering data set increments of 20% (Table 3). Based on the root mean squared error 

(RMSE), we observe that a data augmentation up to 60% was beneficial for both models. For 

values higher than 60%, we concluded that the augmentation introduced redundancies in the data, 

which increased the difficulty for learning the aerodynamic performance of the designs.  

 
Table 3 – Root mean squared error (RMSE) obtained for the MLPs trained on the latent spaces of the PC-AE (MLP-AE)  

and PC-VAE (MLP-VAE) considering different ratios of data augmentation. 

Ratio of augmented data MLP-AE (RMSE) MLP-VAE (RMSE) 

0 0.0480 ± 0.0006 0.0550 ± 0.0023 

0.2 0.0454 ± 0.0011 0.0488 ± 0.0014 

0.4 0.0447 ± 0.0011 0.0492 ± 0.0015 

0.6 0.0452 ± 0.0013 0.0491 ± 0.0011 

0.8 0.0474 ± 0.0012 0.0557 ± 0.0018 

1 0.0492 ± 0.0017 0.0570 ± 0.0020 

 

3.2.  Multi-objective Design Optimization 
 

Although meta-models accelerate the calculation to estimate the design performance in multiple 

domains, the engineers still have to handle the results to take multi-criteria decisions (MCDM), 

such as balancing between structural efficiency, aesthetics, and manufacturing costs. Thus, 

providing an efficient approach to optimize designs considering design preferences in MCDM 

potentially leads to higher chances of design innovation at early product development stages. 

Therefore, in [12], we formulated a real-world inspired design optimization scenarios with and 

without prior preference knowledge and explored the feasibility of the learned latent representation 

of our PC-VAE (Section 2.2.2) as a geometric representation for multi-objective optimization. 
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In our experiments, we formulate two scenarios of multi-objective 3D target shape matching 

optimization problems. Hence, we select target shapes that address specific design problems, such 

as aesthetics (ܵଵ) and aerodynamic performance (ܵଶ). In our first scenario (in  

Figure 15.a), we assume that the designer aims to generate a wide range of designs, as in an initial 

design exploration phase in product development. In the second scenario (in  

Figure 15.b), we assume the designer/decision maker (DM) aims to generate a solution of interest 

such that the shape is an intermediate between the two reference shapes (ܵଵ and ܵଶ).  

 

 
 

Figure 15 – Two scenarios for multi-criteria decision analysis. S1 and S2 are two reference shapes for the optimization task. 

Hence, we formulate our multi-objective design problem as: 

  ଵ݂ሺݖሻ,  ଶ݂ሺݖሻ�∈஽௠௜௡ ,  (8) ܵ~ݖ

௜݂ሺܵ, ܵ௜ሻ = ∑ ݔ‖ − ���௜‖ଶଶ�����௠௜௡ݔ + ∑ ௜ݔ‖ − �����ଶଶ���௠௜௡‖ݔ  (9) 

 

where ଵ݂, ଶ݂ are the two objective functions evaluated using Chamfer Distance (CD) and ݖ is an n-

dimensional latent vector of our PC-VAE, where each parameter is a decision variable in the 

optimization for generating the currently deformed shape ܵ, and which are modified by the 

optimization algorithm. ܵ௜  represents the two reference shapes ܵଵ and ܵଶ  and ݔ,  ௜ are points inݔ

the currently deformed shape ܵ  and the reference shapes respectively. The objective functions of 

the optimization receive an n-dimensional latent vector of each 3D shape from the latent space of 

our trained PC-VAE. Then, the decoder of the PC-VAE converts the latent vector to the 3D domain 

where the objective function computes the difference between the reference shapes ௜ܵ to the 

currently deformed shape ܵ using CD.  

For the second scenario in Figure 12.b), in order to generate a single solution point that reflects 

preferences, the DM needs to specify comparative preference states for each objective function 

value. However, since our objective functions are distance functions, we assume the DM can 

specify the desired distance values ݀ଵܽ݊݀ ݀ଶ for each objective. Thus, the DM’s preference can 
be defined as a distance ratio (ߙ) function, where ߙ = ௗభௗమ. 

3.2.1. Generating diverse design solutions (Scenario 1) 
For scenario 1 (Figure 12.a)), to generate a diverse range of design solutions between shape ܵଵ and ܵଶ, we utilize a multi-objective evolutionary algorithm (MOEA) to solve our multi-objective 
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optimization problem. The MOEAs for solving multi-objective optimizations are generally 

initialized with a random initial population, which may lead to infeasible solutions. Thus, to 

improve the convergence of MOEAs, we propose an approach that generates a target-oriented 

initial population (Figure 16). We first decompose our multi-objective optimization problem into 

2 single-objective sub-problems. Every single optimization is performed using the covariance 

matrix adaptation evolution strategy (CMA-ES) method [22], which we selected due to its 

suitability for small populations, high convergence ratio and a low number of hyper-parameters. 

Then, we interpolate between the optimized solution of each problem, which are represented in 

the latent space, and enumerate the interpolated samples based on the contribution of each solution. 

The latent vectors generated through interpolation (Lerp-seed) are used for the initialization of the 

initial population of an MOEA. 

 

 
 

Figure 16 – Proposed seeding mechanism in an MOEA. 

We applied our proposed seeding strategy in a vehicle multi-objective design optimization 

problem. For the individual optimizations with CMA-ES, we set the initial step size to 0.01 and 

the maximum number of generations to 100. As seed population to the MOEA, we generated 100 

designs by interpolating the optimized solutions in the latent space. We analyzed the effect of our 

seeding strategy on a multi-objective particle swarm optimization algorithm (OMOPSO) and 

compared our results to analogous cases performed with no seed MOEAs (NSGA-II and OMOPSO 

with random initialization). To compare the performance of the algorithms, we utilized the 

following metrics: hypervolume coverage (HV), inverted generational distance (IGD), spacing 

(SP) and number of function evaluation (NFEs) (Table 4).  

 
Table 4 – Performance measures of the optimization result for NSGA-II, OMOPSO, and Lerp-seed OMOPSO. 

Methods NFEs HV (mean) SP (mean) IGD (mean) 

NSGA-II 10000 0.473 0.186 0.06 

OMOPSO 10000 0.484 0.229 0.059 

Lerp-seed OMOPSO 10000 0.49 0.211 0.055 

 

Considering that an MOEA that yields a set of solutions with high HV and low IGD values 

provides better distribution of the generated non-dominated solutions, we observe that the Lerp-

seed OMOPSO achieves the best results with respect to mean HV and IGD values for our design 

optimization task. Furthermore, by comparing the values of HV and IGD over the generations after 
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the CMA-ES initialization for 30 different runs (Figure 17), we conclude that the OMOPSO with 

Lerp-seed for initial population construction outperformed a random based approach on average 

and, thus, that spending some additional computational effort in constructing a target oriented 

initial population of an MOEA helps to improve the convergence in the optimization.  

 

 

Figure 17 – Change of mean HV and IGD (over 10 runs) with respect to the number of function evaluations (NFEs). 

3.2.2. Generating a solution of interest (Scenario 2) 
For scenario 2, in order to generate a single solution that reflects the user preference (ߙ), the 

decision maker (DM) needs to specify a reference value for each objective. Often this additional 

knowledge of the DM preference is integrated as an additional objective within the optimization 

algorithm. Here, we add the preference information to the MOP using the weighted sum method 

(WSM). The WSM combines the objectives of the MOP into a single-objective problem, which 

consists of the weighted sum of the objective functions (Eq. 10), where ݓ௜ is the weight assigned 

to the objective function ௜݂. 
,ݔሺ⃗ܨ  ଵሻݓ = ଵݓ ଵ݂ሺ⃗ݔሻ + ଶݓ ଶ݂ሺ⃗ݔሻ 

(10) 

 

The weights are chosen between 0 and 1, and it is a common practice to choose weights in a way 

that their sum equals to 1, i.e., ݓଶ = ͳ −  ଵ. Since the literature lacks work on adapting theݓ

weights in WSM to match the designer’s preference, we propose a method in [12] to adapt the 

WSM weights in order to obtain optimized solutions that reflect the DM’s design preference with 

a low computational cost.  

 

For our experiments, we considered a two-objective design optimization problem and formulated 

according to the weighted sum approach. To search an optimal ݓଵ within a bound, we propose a 

two-step method (Figure 18) involving a global optimization of the weighted-sum function  

(Eq. 11) to minimize a cost function ܥሺ⃗ݔ,   .ଵሻݓ
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Figure 18 – Optimization strategy to determine weight w1 in a weighted -sum method to match the DM's design preference. ܥሺ⃗ݔ, ଵሻݓ = ሺ̅ߙ − ଵ݂ሺ⃗ݔሻଶ݂ሺ⃗ݔሻሻଶ
 

(11) 

 

In the first step of our proposed strategy (Figure 18), we considered CMA-ES for our WSM. CMA-

ES often requires providing a feasible solution as a starting point as the initial candidate solution. 

We utilized our proposed seeding strategy and selected a solution that is the closest to the preferred 

distance function ݀ଵ̅̅ ̅ and ݀ଶ̅̅ ̅ as the initial solution vector (ݔ௢) for CMA-ES [22]. This way of 

selecting the initial solution vector targets to reduce the number of generations required for 

convergence to the optimum. In the second step, we utilize the simplicial homology global 

optimization (SHGO) algorithm, which is a promising, derivative-free global optimization 

algorithm, and it also returns all other local and global minima. The optimizer determines the 

global minimum of weight ݓଵ by minimizing the cost function in Eq. 11. The final optimal weight ݓଵ helps the DM to understand the relation between the weights in WSM and the final solution. 

 

In our experiments, we considered three preference cases (1 ,2 = ߙ and 0.5) in Scenario 2 (Figure 

15) and utilized our proposed method for determining the weights to generate a final solution to 

match the DM’s design preference. As baseline performance, we considered the results obtained 

with MOEA with the designer’s preference added as a third objective function. From our 

experiments, we conclude that the quality of the results is better, if the generated solution is closer 

to the normalized preference ratio (̅ߙ) with low number of function evaluations (NFEs) and lower 

quality. Therefore, we defined as quality metric the Euclidean distance between the generated 

sample and preferred solution (݀ଵ̅̅ ̅ , ݀ଶ̅̅ ̅ሻ. By comparing the approaches based on the quality of the 

results (Table 5), we observed that the optimization applying our method achieved designs that 

matched the designer’s preference with less deviations.  

Thus, through our research we confirmed the feasibility of the latent representation for multi-

objective design optimization tasks. Through quantitative evaluations we demonstrate that our 

proposed strategy based on the utilization of the PC-VAE’s latent space knowledge contributes to 

an improved convergence of multi-objective optimization algorithms in different scenarios of 

preference-driven optimization.  
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Table 5 – Quality of the final solution comparison between WSM method and 3-objective MOEA. 

Methods Metrics 

Preference ratio ߙ = ߙ ʹ = ͳ ߙ = Ͳ.ͷ ̅ߙ = ͹.9Ͷ ̅ߙ = ͳ.͸0 ̅ߙ = Ͳ.ͷ͸ 

Search ݓଵwith global 

optimizer in WSM 

NFEs 4000 5000 5500 

Normalized preference (̅ߙ) 0.48 1.1 7.96 

Quality 0.019 0.085 0.089 

3-objective MOEA 

NFEs 10000 10000 10000 

Normalized preference (̅ߙ) 0.56 1.1 6.3 

Quality 0.11 0.12 0.28 

 

3.3.  Multi-task Design Optimization using 3D Point Cloud Autoencoders 
 

In the previous optimization scenarios, we explored the notion of experience given as information 

learned by the autoencoders from a data set of CAE models in an offline fashion. In multi-task 

optimization problems, the algorithms map multiple design representations into a single search 

space, where the solutions are combined throughout the generations and reassigned to different 

tasks (Figure 19). The underlying assumption is that the individuals that excel in a particular task 

potentially carry useful information to drive designs in synergetic tasks faster towards optimality. 

Therefore, the optimization algorithms that follow this paradigm rely on an online implicit 

knowledge transfer between sub-sets of the population that address different tasks. 

 

 
 

Figure 19 – Example of a generic multi-task design optimization framework. 

However, mapping multiple design features without a clear semantic overlap to a single design 

space is a challenging task. Current solutions, e.g., binary key encoding, address the problem 

technically, but generate representations that miss synergies between tasks and have lower 

scalability to higher dimensional spaces. We address this challenge by utilizing the latent space 

learned by our proposed 3D point cloud autoencoder (PC-AE) as unified search space for multi-

task design optimization. Since the latent space is domain-agnostic, the representation allows us 

to combine geometries that are fundamentally different and address different tasks. Furthermore, 

the autoencoder learns the overlap between and mapping between different design features. Thus, 

our approach reduces (if not eliminates) the manual work to combine design features from different 

design spaces. 
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In [7], we propose a multi-task optimization framework with two steps (Figure 20): Pre-processing 

and multi-task optimization. In the pre-processing step, the objective is to learn the design 

representations and select the latent features that will perform as optimization degrees of freedom 

based on the feature visualization technique. In the multi-task phase, the optimization algorithm 

searches for solutions in the latent space, and we utilize the trained decoder as a shape-generative 

model, which maps back the solutions from the unified search space to the domain of each task. 

As a demonstration of our framework, we performed a multi-task vehicle aerodynamic 

optimization, where we minimize the aerodynamic drag of three car shapes. Furthermore, we 

exploit the transfer of features in the latent space to foster common underbody design in the 

optimized shapes, which would allow the vehicles to have a similar platform design. Platform 

designs refer in the automotive domain to having a portfolio of different car types, which have a 

high share of similar components and, thus, reduce the overall manufacturing costs. 

 

 
 

Figure 20 – Proposed multi-task framework for the optimization of 3D designs utilizing the latent space of the  

3D point cloud autoencoder (PC-AE) as unified search space. 

3.3.1. Pre-processing 
For learning the design representations, we train a PC-AE on the shapes of the car class of 

ShapeNetCore [2], sampled with the shrink-wrapping method into 3D point clouds with 6146 

points. We set the autoencoder hyperparameters as described in Table A 1 (Appendix A), but 

reduced the dimensionality of the latent space to 20 dimensions since interpreting the features of 

latent spaces with more than 20 dimensions is challenging [7]. Also, we utilize the same algorithm 

and corresponding settings to optimize the network weights as described for Scenario A of the 

benchmark analysis (Section 2.2.4). For the proposed settings, PC-AE yields a mean Chamfer 

Distance of CD = (3.03±0.07)E-04 on the test data, which is a higher value than in the benchmark 

experiment, as expected, since we reduced the dimensionality of the latent space. 

 

Then, for a set of initial designs, we utilize the feature visualization to select the degrees of freedom 

for the design optimization. The motivation to utilize a sub-set of latent features is two-fold: First, 

we constrain the design modifications to areas of interest, e.g., optimizing only the passenger cabin 

of a pick-up truck to keep the volume of transportable cargo (functionality) of the vehicle. Second, 

it allows the multi-task optimization to combine specific common features of the shapes and 

potentially generate optimized shapes with common design characteristics, such as the underbody 

shape. In our experiments [7], we utilized as initial designs a pick-up truck (S1), a sedan (S2) and 

a hatchback (S3). For each shape, we enabled different sets of degrees of freedom, which have as 
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intersection the features that map the underbody of the car shapes (Figure 21). Hence, in our 

aerodynamic optimization, we aim to improve the performance of the vehicles but generate shapes 

with similar underbody to simplify the underbody design and reduce manufacturing costs. 

 

 
 

Figure 21 – Visualization of the regions mapped by the selected features ܼ′for each of the shapes (in red) and combined 

activations of the selected features (color maps). The brighter colors indicate higher values of combined activations. 

3.3.2. Multi-factorial Evolutionary Algorithm 
The algorithm implemented in our framework is an adaptation of the multi-factorial evolutionary 

algorithm (MFEA) proposed in [23]. The MFEA is a genetic algorithm where the individuals are 

labelled with a skill factor �௜ and a scalar fitness �௜, which indicate the task on which the i-th 

individual excels the fitness of the individual compared to the remaining set of the population 

assigned to the same task. Hence, to generate an offspring population, the algorithm iteratively 

selects pairs of parents from the population with a probability based on the scalar fitness, combines 

the selected individuals through assortative mating and assigns the new skill factors using vertical 

cultural transmission. 

 

In MFEA, the assortative mating and vertical cultural transmission are the mechanisms that allow 

to exchange knowledge between individuals assigned to different tasks (Figure 22). Given two 

parents ሺ�஺, �஻ሻ and a random mating probability ݉ݎ�, the assortative mating generates two 

offspring designs through simulated binary crossover (SBX), if the parents have the same skill 

factor or � < � where � is a random number sampled at every mating and ,�݉ݎ ∈ [Ͳ,ͳ]. Otherwise, 

the offspring designs are generated through mutation of the parent designs. Regardless of the case, 

the algorithm outputs the offspring design ܵ∗ and skill factors �� of the corresponding parents, 

which are forwarded to the vertical cultural transmission. Then, given ܵ∗ and ��, the vertical 

cultural transmission assigns the skill factor to ܵ∗ as the same as the parents, if the parents were 

assigned to the same task. Otherwise, the skill factor is assigned a random value. 

 

 
 

Figure 22 – Block diagram of the pseudo-code for the assortative mating and vertical cultural transmission algorithms. 
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Compared to the proposal in [23], our framework has two main differences. First, instead of 

initializing the population with random individuals, we generate ߣ individuals in K equally sized 

partitions by mutating the latent representation of the initial designs. Hence, we avoid the 

expensive evaluation of all individuals across all tasks since the skill factor is known beforehand. 

Second, after the vertical cultural transmission, we map the offspring back to the task-specific 

populations by transferring the features selected with the feature visualization to the initial design 

representations.  The complete algorithm (Algorithm 2) is presented in Appendix B. 

 

We verified the modified algorithm with a set of experiments using four standard 20D benchmark 

functions used in optimization algorithm research: Sphere, Rastrigin, Ackley and Rosenbrock 

defined in the interval [−ͷͲ,ͷͲ]ଶ଴. In terms of scenarios, we optimized the functions individually, 

in pairs, trios and all together, which covers all possible combinations for multi-task optimization 

with the proposed functions. Furthermore, we varied the rmp parameter between (0.0, 0.3, 0.5, 0.7, 

1.0) to assess the effects of the knowledge transfer on performance of the optimizations. For each 

case (combination and rmp value), we performed 30 runs with different initializations. By 

analysing the results with respect to the function combinations and rmp (Figure 23), we conclude 

that the MFEA accelerated the optimizations in all cases, even though the quality of the results 

varied depending on the combination of functions. Furthermore, we obtain the highest 

convergence ratio by using intermediate values of rmp (0.3), which indicates that increasing the 

probability to combine individuals from different tasks also increases the chances of negative 

knowledge transfer, which slows down the optimization and lead to suboptimal results. 

 

 
Figure 23 – Analysis of the mean factorial cost �௜ (function value) obtained for the Ackley function  

in all optimization cases over 30 runs. 

Since the optimization results were in line with the work presented in [23], [24], we considered 

our algorithm successfully validated. Therefore, we applied our framework in a real world-inspired 

scenario of vehicle aerodynamic optimization, which we discuss in the following section. 

3.3.3. Multi-task Vehicle Aerodynamic Optimization 
Our aerodynamic optimization problem consists of minimizing the drag force of the three car 

shapes selected in the pre-processing phase (Section 3.3.1). We calculate the aerodynamic drag 
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with CFD simulations using OpenFOAM®, where we consider the vehicles driving in a straight 

line with a constant speed of ܷ =110 km/h. The factorial cost of each task is defined as: 

 Ψ௝ = �ܨ +  ρMSDሺ ௝ܵ∗, ௝ܵ,௡௘௔�∗ ሻ 
(12) 

Where ܨ� is the aerodynamic drag, ρ a penalty factor, ௝ܵ∗ the proposed solution and ௝ܵ,௡௘௔�∗  the most 

similar design in the autoencoder training data to the proposed solution. Hence, the penalty forces 

the MFEA to search for solutions near the learned region in the latent space, which increases the 

chances of generating realistic car shapes as optimum designs. 

 

We considered as scenarios the optimization of the shapes in all possible pairs and the three shapes 

together, similar to the verification experiments. As baseline performance, we considered the 

optimization of the shapes with a genetic algorithm initialized with identical hyperparameters as 

in the MFEA. We set the population size to ߣ = ͳͷ, maximum number of generations to 20 and 

rmp to 0.3. We implemented our framework on a cluster setup to perform the CFD simulations in 

parallel with 16 processors each. The runtime of each batch of simulations took up to 75 minutes 

and a complete optimization 23h, on average. 

 

 
 

Figure 24 – Analysis of the convergence ratio of the optimizations with MFEA (left) and visualization of the optimized 

populations in a 2d embedding of the latent space for different optimization cases (right). 

By analyzing the fitness convergence results (Figure 24, left), we observed that the MFEA 

accelerated most of the optimization cases. The optimizations in pairs were more successful when 

the sedan (S2) was one of the designs in the pair. The optimizations with the pick-up and hatchback 

(S1,S3) and the optimization with all shapes were comparable or worse with respect to the baseline. 

We verified these results by visualizing the optimized populations in a 2D projection of the latent 

space (Figure 24, right). By comparing the latent representations, we conclude that our MFEA 

framework searches for designs that approximate the shape with best performance, which in these 

scenarios was the sedan design. Hence, when the shapes had similar performance (e.g., S1 and 

S3), the optimization was slower, since the shapes shared similar features. Also, in the optimization 

with all designs, the MFEA potentially caused negative knowledge transfer from S1 and S3 to S2, 
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such that the sedan design remained nearly unchanged, and the other shapes presented minor 

improvements. 

 

 

 
 

Figure 25 – Analysis of the distance between corresponding points for pairs of shapes obtained in different optimization 

scenarios. The brighter colors indicate greater distance (less similarity) between points. 

Finally, we visualized the optimal designs obtained with MFEA and compared shape similarities 

for different optimization scenarios (Figure 25). Comparatively, the MFEA increased the similarity 

between shapes (darker regions in Figure 25), particularly in the underbody region. Therefore, we 

conclude that our proposed MFEA framework also enables to foster common design features in 

optimized shapes, which can be used to address simultaneously manufacturing-related problems 

without explicit constraints. Furthermore, our proposed representation adds a semantic 

interpretation to the knowledge transfer in MFEA, which is the transfer of geometric features 

between shapes that excel on different tasks. 

3.4.  Vehicle Aerodynamic Optimization Using Point2FFD 
 

In the application scenario presented in this section, we propose to address the state-of-readiness 

of the models generated by the autoencoders using our Point2FFD architecture. In the previous 

cases, we prototyped simplified meshes (water-tight, genus-0) to perform the aerodynamic 

simulations. Since Point2FFD generates simulation-ready CAE meshes based on detailed template 

models, we compared the performance of Point2FFD with respect to PC-AE in a vehicle 

aerodynamic optimization scenario to assess the potential benefits of the proposed architecture 

with respect to our previous approach. 

3.4.1. Experimental Set-up 
 

For this set of experiments, we proposed the minimization of the aerodynamic drag of three car 

shapes: a sport utility vehicle (SUV), a coupé, and a sedan (Figure 26), which we assume to be 

known designs from previous product development processes. Therefore, we train Point2FFD 

considering these shapes as mesh templates, such that the network can exploit design features 

learned from a benchmark data set by deforming the prototypes. 
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Figure 26 – Initial designs for the aerodynamic optimization and utilized as templates to train Point2FFD. 

As benchmark data set, we utilized the car class from ShapeNetCore, sampled with the shrink-

wrapping method into 3D point clouds with 6146 points. We trained Point2FFD with the 

hyperparameters listed in Table A 1 (Appendix A), except the size of the latent layer, which we 

set to 50, and the number of prototypes, which we set to K=3. We set the training algorithm and 

remaining hyperparameters as proposed for the Scenario A of the benchmark analysis. For 

comparing the optimization performance, we trained our PC-AE architecture considering the same 

settings and conditions. 

 

To calculate the aerodynamic forces, we utilized the same simulation framework considered in the 

multi-task optimizations: Vehicles moving in a straight line with a constant speed of ܷ =110 km/h. 

We performed unconstrained optimizations and, thus, the objective function only comprised the 

aerodynamic drag force. For optimizing the shapes, we utilized the CMA-ES algorithm [22], which 

we initialized with a population size of ߣ = ͳ͸, number of parents of ߤ = ͷ and maximum number 

of generations of 20. We implemented our framework in the same cluster set up as used in the 

multi-task optimizations, where we performed each simulation in parallel using 16 processors. 

Each batch of simulations based on the simplified meshes generated on the output point clouds of 

the PC-AE took at most 75 minutes, while the batches of simulations based on the Point2FFD 

output meshes took 120 minutes each. 

3.4.2. Results and Discussion 
 

Comparing the mean fitness of the population over the generations (Figure 27), we observe that 

Point2FFD achieved results significantly better (>50%) than PC-AE. The difference in 

performance is justified by two main reasons. The first is that Point2FFD ultimately generates 

shapes by deforming high-quality polygonal meshes and the shape-generative model is trained 

with noise. Hence, the shape-generative model of Point2FFD is more robust and when the 

optimization algorithm visits unknown regions in the latent space, the FFD potentially smooths 

the shape modifications while the PC-AE yields fuzzy point clouds.  
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Figure 27 – Analysis of the population fitness over the generations (top) and comparison of the optimized shapes (bottom) 

obtained with the PC-AE and Point2FFD representations. 

The second reason is the level of detail in the generated shapes, which reflects the fidelity of the 

simulation results and, thus, the evolution path. Since Point2FFD recovers more realistic shapes, 

the representation allows the optimizer to modify local geometric characteristics more efficiently, 

since in the mesh reconstruction on the PC-AE point clouds eliminates small scale changes. Hence, 

the optimization algorithm is able to achieve better solutions with Point2FFD within a smaller 

number of generations. 

 

 
 

Figure 28 – Comparison of the wheels and wheelhouse of the fittest individuals at the first generation of the sedan optimization. 

4. GDL4DesignApps: Geometric Deep Learning for Design Applications 
 

In order to efficiently utilize the proposed methods in engineering design optimization, we 

implemented the deep-generative models in a single software package called GDL4DesignApps: 

Geometric Deep Learning for Design Applications. The package comprises the algorithms for 

training and applying our neural network architectures, for the visualization of the network 

features, as well as examples of their applications in design optimization as described in this report. 

4.1. Requisites and Testing Conditions 
 

We implemented the software using the Python language and open-source libraries (Table 6). For 



 

 

 

 

34 | 4 4  

 

the applications that require the calculation of the Chamfer Distance implemented in [11], we 

adapted the source code used in [8] to Python 3 and to the specific hardware utilized in the 

experiments. Also, for visualizing and working with the examples, we recommend the installation 

of the Jupyter notebook library [25]. 

 
Table 6 – List of Python libraries required for utilizing our software package. 

Library Version Application 

Numpy 1.19.1 Scientific computing 

Pandas 1.1.0 Data analysis toolkit 

Tensorflow-GPU 1.14.0 Platform for machine learning applications 

TFLearn 0.3.2 Deep learning library built upon Tensorflow 

Matplotlib 3.2.2 Library for data visualization 

Plotly 4.9.0 Standalone javascript data visualization library 

Cuda toolkit 10.1.168 NVIDIA toolkit for GPU-accelerated applications 

CudNN 7.6.5 NVIDIA CUDA® deep neural network library 

Scikit Learn 0.23.2 Python module for machine learning 

PyVista 0.29.1 Visualization toolkit for geometri data 

Pycma 3.1.0 Implementation of the CMA-ES algorithm 

Platypus 1.0.4 Framework for evolutionary computing 

 

We developed our software package on machines with Linux OS (Ubuntu 18.04) with dedicated 

Conda® environments. In terms of hardware, we tested our scripts on machines with two CPUs 

Intel® Xeon® clocked at 2.10 GHz and on two different sets of GPUs: four GPUs Nvidia® 

GeForce® RTX2080 Ti with 12 GB each, and two GPUs Nvidia® Quadro® RTX8000 with 48GB 

each. The scripts for training the architectures are the most computationally demanding and, 

therefore, perform better in setups with GPUs. However, applying the networks as shape-

generative models or for feature visualization requires less computational effort. Therefore, in 

these cases, we computed the shapes using CPUs. 

 

The last requisite to utilize the scripts is the data set with the CAE models, which has to be 

generated by the users or downloaded from benchmark repositories, such as ShapeNet [2]. For our 

scripts, we assume that the data is stored in a single directory and that the files are in one of the 

following formats: .csv, .xyz, .stl or .obj. The maximum size and number of CAE models that can 

be loaded depends on the available hardware. In our experiments, we utilized data sets with up to 

7000 shapes and a maximum point cloud size of 24578 points. 

4.2.  Software Modules 

4.2.1. Pre-processing CAE Models 
 

As a general case, we assume that the data set for training the architectures comprises CAE models 

without a common structure or topology. If the target task requires random uniform sampling 

(RUS), the user can directly proceed to the training scripts, since the sampling probability neglects 
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any information related to geometric features. In case the user decides to sample the shapes using 

high-pass filtering (HPF) or shrink-wrapping (SWM), one has to preprocess the data before 

running the scripts to train the architectures (Figure 29). For the HPF, our scripts apply an edge-

detection filtering technique to the geometries and yield files with the sampling probabilities, 

which are utilized by the training scripts to load the data set. The procedure to sample the shapes 

with SWM is similar, but the corresponding script outputs the point cloud (XYZ) and mesh (STL) 

files, which are used by the training scripts. 

 

 
Figure 29 – Workflow for sampling CAE models before training the architectures with the commands for running the scripts. 

4.2.2. Training the Deep-generative Models 
 

The first step to use our PC-AE and PC-VAE includes the training of the parameters on a dataset 

of 3D point clouds. We created individual scripts to train each of the proposed models to address 

specific implementation details. However, all algorithms follow a similar structure (Figure 30) and 

command line to start the algorithms. To start the training scripts on a terminal window, the user 

has to execute the following command:  

 

python script_name --config config_file --GPU gpu_id, 

 

Where script_name is the name of the training script, config_file is a file with a dictionary 

containing the network hyperparameters, and gpu_id the identification of the GPU that should be 

used. 

 
Figure 30 – Pseudocode of the basic algorithm utilized for training the architectures. 

We use the configuration file for multiple scripts, such as training, testing, and visualizing the 

network features. Furthermore, it allows to easily log the network configuration in benchmark 

experiments and avoids errors by manually modifying multiple application scripts. The structure 

of the dictionary in the file (Figure 31) is fixed, as well as the names of the dictionary (“confignet”) 
and keys (e.g., “net_id”). The applications manage to utilize only the required keys and neglect 
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unnecessary information, e.g., mesh templates for training PC-AE, and the dictionary is stored in 

a python file (.py). 

 

 
Figure 31 – Structure of the configuration file used for training and applying the deep-generative models. 

Finally, after training the architectures, the scripts store a set of files in the specified output 

directory. Besides a copy of the configuration file, the output data includes the lists of files used 

for training and testing the architecture, the history of losses calculated during training, the trained 

weights and graph of the architecture, which we need to load before utilizing the networks in 

downstream applications. 

4.2.3. Network Evaluation and Feature Visualization 
 

We also implemented the scripts to calculate the losses on test sets of geometric data, as well as to 

visualize the features calculated in the encoder layers. The main requisite for running these scripts 

are the files with the network configuration, trained weights, and network graph. The baseline 

algorithm (Figure 32) follows the initialization of the training algorithm. However, instead of the 

optimization of the network weights, the scripts load the trained network to calculate the network 

features and reconstructions based on the input data. Then, based on the obtained values, the scripts 

process the data to generate the output files.  

 

confignet = { 

                    'net_id': ͚Ŷaŵe to ideŶtify the Ŷetwork͛, 
                    'dataset': [list of directories with CAE data], 

                    'proto_list': [list of files to be used as a mesh templates (Point2FFD)], 

                    'class_layers': [list with the layers of the MLP classifier (Point2FFD)], 

                    'ffd_lmn': [list with control planes in x-, y-, z-direction (Point2FFD)], 

                    'data_size': [list with number of shapes to be sampled from each data set], 

                    'out_data': ͚directory to store the logs and trained weights͛, 
                    'training_batch_size': batch size for training the architecture, 

                    'test_batch_size': batch size for testing the architecture, 

                    'pc_size': point cloud size, 

                    'latent_layer': size of the latent layer, 

                    'noise_amp': standard deviation for the noise in the latent layer (Point2FFD), 

                    'encoder_layers': [list with the number of features the encoder layers], 

                    'decoder_layers': [list with the number of features the decoder layers], 

                    'l_rate': learning rate, 

                    'epochs_max': maximum number of epochs, 

                    'stop_training': termination criteria: minimum loss value, 

                    'frac_training': split of the data used for training the architecture (90% → 0.9), 

                    'autosave_rate': interval of epochs for saving the weights and log files 

        } 
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Figure 32 – Baseline algorithm for calculating the reconstruction losses and visualizing the network features  

based on a test set of geometric data. 

In the scripts, we load the network information in different steps within a Tensorflow session 

(Figure 33). First, we load the graph and trained parameters (variable graph), which includes all 

operations and assigned variables of the deep neural network. In the following steps, we load 

specific network operators, such as the input neurons (x), latent vector (Z) and features for 

visualization (feat). We utilize the variables to feed or retrieve values processed by the network. 

 

 
Figure 33 – Code snippet of the code used for loading data from the trained networks. 

The network evaluation scripts output a text file with the names of the input geometries, the 

corresponding latent representation, reconstruction losses and a flag identifying if the shape was 

in the training or test data. For the feature visualization, the script outputs image files with the 

projected activations on the input point clouds as colormaps. The command lines for running the 

scripts follows the same pattern as for training the networks, but the name of the script is 

substituted by the corresponding scripts for network evaluation and feature visualization. 

# Import the Tensorflow library 

import tensorflow as tf 
 

# Start a Tensorflow session 

sess = tf.Session() 
 

# Import Graph 

new_saver = tf.train.import_meta_graph(TFmetaFile, clear_devices=True) 

new_saver.restore(sess, tf.train.latest_checkpoint(TFDirectory)) 

graph = tf.get_default_graph() 
 

## Import network layers' output as variables 

# Input 

x = graph.get_tensor_by_name("x:0") 
 

# Latent Representation 

Z = graph.get_tensor_by_name("latent_rep:0") 
 

# Features for visualization 

feat = graph.get_tensor_by_name("CLayer_4:0") 
 

# Output point clouds 

point_clouds = graph.get_tensor_by_name("PC:0") 
 

# Calculate Z, feat, and point_clouds and assign to the variables lr, F and S, respectively 

lr, F, S = sess.run([Z, feat, point_clouds], feed_dict={x: pc}) 
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4.2.4. Shape-generative Tasks 
 

We utilize the networks in shape-generative tasks within design and optimization problems using 

the same routine to load the networks (Figure 33). Although the optimization frameworks have 

different implementation details, the algorithms utilize similar sub-routines, such as to generate 

shapes from latent representations after performing operations using the latent variables. 

 

A typical operation in the latent space is to combine shapes through interpolation, as we performed 

in [12] to initialize the populations in multi-objective design optimizations. In our scripts (Figure 

34), after loading the trained PC-VAE network and assuming two point clouds ܵଵand ܵ ଶ, we utilize 

the network operators to calculate the respective latent representations (ܼଵ, ܼଶ). To interpolate the 

designs, we linearly interpolate the latent variables (in our example with a ratio of 50%), and feed 

them back to the network using the operator Z as input to generate the output point cloud. This 

example can be extended to the combination and transfer of individual features, as performed in 

[7], and random sampling in the latent space, as shown in [13]. 

 

 
Figure 34 – Code snippet to interpolate two shapes based on the respective latent representations  

and generate the corresponding 3D point cloud. 

4.3. Licensing and Deployment 
 

We open-sourced our software package in a GitHub repository called Geometric Deep Learning 

for Design Applications (GDL4DesignApps), available in https://github.com/HRI-

EU/GDL4DesignApps and forked to the project repository in https://github.com/ECOLE-

ITN/GDL4DesignApps [26]. The scripts are provided under the terms of GNU General Public 

License version 3 (GPL 3.0) as published by the Free Software Foundation. In the repository, we 

provide instructions for downloading and usage of the scripts, as well as examples of application. 

## Import network layers' output as variables 

# Input 

x = graph.get_tensor_by_name("x:0") 
 

# Dropout rate (required only for the PC-VAE) 

dout = graph.get_tensor_by_name("do_rate:0") 
 

# Latent Representation 

Z = graph.get_tensor_by_name("latent_rep:0") 
 

# Output point clouds 

point_clouds = graph.get_tensor_by_name("PC:0") 
 

## Calculate the latent representations of two point clouds: S1 and S2 

Z1 = sess.run(Z, feed_dict={x: S1}) 

Z2 = sess.run(Z, feed_dict={x: S2}) 
 

## Generate interpolated  latent representation (50% of Z1 + 50% of Z2) 

Zm = 0.5*Z1 + 0.5*Z2 
 

## Generate output point cloud 

Sm = sess.run(point_clouds, feed_dict={Z: Zm, dout: 1.0}) 

https://github.com/HRI-EU/GDL4DesignApps
https://github.com/HRI-EU/GDL4DesignApps
https://github.com/ECOLE-ITN/GDL4DesignApps
https://github.com/ECOLE-ITN/GDL4DesignApps
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The repository is organized in three directories: main, include and examples. In main, we provide 

the software documentation and licensing information. The include directory contains the main 

scripts, such as for training the deep neural networks and optimization frameworks. In examples, 

we added more detailed instructions to utilize the software package in Jupyter notebook files. 

5. Summary and Outlook 
 

Engineers intuitively exploit experience learned by solving different problems to address new and 

more challenging tasks. The increasing availability of digital data generated during the design 

process of products delineate a potential scenario to learn design experience from engineering data 

using sophisticated deep learning architectures. Yet, the high-dimensionality and unstructured 

nature of the data poses many challenges for state-of-the-art machine learning algorithms, which 

we address with a new set of methods compiled in a single software package: GDL4DesignApps. 

 

In this report, we present the background and implementation details of our software package. We 

divided the discussion of our methods into two main parts: pre-processing and optimization. In the 

pre-processing, we discuss the utilized techniques for sampling 3D point clouds from CAE models, 

the architecture of our proposed deep-generative models and a benchmark analysis, where we 

compare the performance of the proposed neural networks to a reference model from the literature. 

We show that our implementations learn geometric data more efficiently, since our networks 

provide comparable shape-generative performance and require lower computational effort. 

Furthermore, we have advanced the state-of-the-art on deep-generative models by proposing 

Point2FFD, a simulation-oriented generative model that generates shapes with higher state of 

readiness for engineering simulations than 3D point clouds, as used in previous research. We also 

utilize the technique that we have proposed for visualizing the network features to select degrees 

of freedom for optimization problems and feature transfer between shapes. 

 

Following the pre-processing, we demonstrate the application of our proposed deep-generative 

models in four different real world-inspired optimization scenarios. In a surrogate modelling 

analysis, we show that organizing the point clouds enhances the information learned in the latent 

space of our autoencoders by providing an implicit notion of global geometric structure to the 

network. Furthermore, we explore the shape-generative capabilities of our proposed point cloud 

variational autoencoder (PC-VAE) for data augmentation in surrogate modelling, which is more 

efficient than direct manipulation of raw CAE data. Similarly, in multi-objective optimization 

scenarios, we explore smart sampling techniques in latent space learned by our PC-VAE to 

initialize the population with a “warm start”. Hence, we allow the optimization algorithms to 

converge faster to Pareto-optimal solutions and address better the user preferences. 

 

In a multi-task vehicle aerodynamic optimization, we utilize our proposed point cloud autoencoder 

(PC-AE) as a method to map designs that address different tasks to a single design space. We show 

that by transferring latent features between shapes assigned to different tasks, the optimization 

algorithm implicitly transfers knowledge between different optimization problems. Furthermore, 

the proposed mechanism of feature transfer also fosters commonality in the optimized designs, 

which can be used to address manufacturing costs of multiple vehicles. In a last set of experiments, 
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we compare the performance of Point2FFD to the proposed PC-AE in vehicle aerodynamic 

optimizations. We show that Point2FFD generates shapes with more detail and is more robust than 

our previous generative models, which improves the quality of the optimization results, as well as 

accelerates the solution of the optimizations. 

 

Finally, we introduce our software package, which we open-sourced as a Python library on the 

GitHub page of the ECOLE project. We provide the main requisites for installing and utilizing the 

algorithms, which includes the specification of the hardware utilized to test the algorithms. Also, 

we present an overview of the implemented modules and provide short examples of usage through 

code snippets and block diagrams of the algorithms, which are also available in the repository 

together with other examples as part of the software documentation. 
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Appendix A 
 

Table A 1 - Architectures and corresponding hyperparameters utilized in the benchmark analysis. 

PC-AE-Achlioptas PC-AE 

Loss function: Chamfer Distance [11] Loss function: Mean-squared distance (MSD) 

Layer Type Activation Output Layer Type Activation Output 

1 1D-C ReLU [Np,64] 1 1D-C ReLU [Np,64] 

2 1D-C ReLU [Np,128] 2 1D-C ReLU [Np,128] 

3 1D-C ReLU [Np,128] 3 1D-C ReLU [Np,128] 

4 1D-C ReLU [Np,256] 4 1D-C ReLU [Np,256] 

5 1D-C ReLU [Np,128] 5 1D-C tanh [Np,128] 

6 max-pool None [1,128] 6 max-pool None [1,128] 

7 FC ReLU [256,3] 7 FC ReLU [256,3] 

8 FC ReLU [256,3] 8 FC ReLU [256,3] 

9 FC None [Np,3] 9 FC sigmoid [Np,3] 

PC-VAE Point2FFD 

Loss function: ߙଵܦܥ + )ܦܵܯ :Loss function ܦܵܯଶߙ  ௜ܵ, ܵ̃௜) +  �௘௠௣௟�ܦܵܯ 

1 1D-C ReLU, BN [Np,64] 1 1D-C ReLU [Np,64] 

2 1D-C ReLU, BN [Np,128] 2 1D-C ReLU [Np,128] 

3 1D-C ReLU, BN [Np,128] 3 1D-C ReLU [Np,128] 

4 1D-C ReLU, BN [Np,256] 4 1D-C ReLU [Np,256] 

5 1D-C tanh [Np,128] 5 1D-C tanh [Np,128] 

6 max-pool None [1,128] 6 max-pool None [1,128] 

7,μ none None [1,128] 7,d FC ReLU [256,3] 

7,σ 1D-C sigmoid [1,128] 8,d FC ReLU [256,3] 

8 FC ReLU, BN [256,3] 9,d FC None [݈݉݊,3] 

9 FC ReLU, BN [256,3] 7,m FC ReLU [25,1] 

10 FC sigmoid [Np,3] 8,m FC softmax [K,1] 

Acronyms and variables: 1D convolution (1D-C), fully connected (FC), point cloud size (Np), number of templates 

(K) and batch normalization (BN). The indices m and d in the layers of Point2FFD indicate MLP and decoder, 

respectively. 

 

  



 

 

 

 

44 | 4 4  

 

Appendix B 

 
Algorithm 2 – MFEA algorithm adapted from [23] for the multi-task optimization framework proposed in [7].  

ALGORITHM: Adapted multi-factorial evolutionary algorithm 

REQUIRE: Trained autoencoder ሺए, ऎሻ, ���, � 

1: INITIALIZATION 

2: FOR each task ௝ܶ , ݆ =  ሺͳ, . . . ,  ሻ DOܭ

3:     Calculate the latent representation of the initial design ௝ܵ using the trained 

encoder: ௝ܼ଴ =  ℰሺ ௝ܵሻ 

4:     Mutate ܭ/ߣ times the initial solution ௝ܼ଴ and append to the population � 

5:     Assign the skill factor of ௝ܼ଴ to each offspring ܼ௜ : �௜ = ݆ 

6: END FOR  
7: FOR Each individual in �௜, ݅ =  ሺͳ, . . . ,  ሻ DOߣ

8:     Transfer the features in ௝ܼ′, from ܼ௜ to ௝ܼ଴, where ݆ = �௜, which generates a 

temporary individual ௝ܼ଴∗ 

9:     Reconstruct the shape ௜ܵ in the Cartesian space using the trained decoder: ௜ܵ =  ऎሺ ௝ܼ଴∗ሻ 

10:   Evaluate the design ௜ܵ for the task �௜ and calculate Ψ௜ 
11: END FOR 

  
12: ITERATIONS 

13: WHILE (termination criteria are not achieved) DO 

14:    Calculate the factorial rank ݎ௜ and the scalar fitness �௜ I of the individuals 

15:    Select individuals to generate the population in the next iteration 

16:    Perform assortative mating and generate offspring C 

17:    Assign �௜ through vertical cultural transmission algorithm 

18:    FOR Each individual in ܿ௜,௝ =  ሺͳ, . . . , λሻ DO 

19:        Transfer the features in ௝ܼ′, from ܼ௜ to ௝ܼ଴, where ݆ = �௜, which generates a 

temporary individual ௝ܼ଴∗ 

20:        Reconstruct the shape ௜ܵ in the Cartesian space using the trained decoder: ௜ܵ =  ऎሺ ௝ܼ଴∗ሻ 

21:        Evaluate the design ௜ܵ for the task �௜ and calculate Ψ௜ 
22:    END FOR 

23: END WHILE 

  
24: RETURN ௝ܵ  @ max(�௝) , ݆ = ሺͳ, … ,  ሻܭ

Variables: Encoder (ℰ), decoder (�), latent representation (ܼ), number of tasks (K), population 

size (ߣ), factorial cost (Ψ), skill factor (�), scalar fitness (�) 
 

 


