Experience-based Computation:
Learning to Optimise

Project Number: 766186
Project Acronym: ECOLE
Project title: Experienced-based Computation: L earning to Optimise

DeliverableD1.2

Multi-Criteria Optimization Focusing On L earning For Adaptive Feature

Selection And Constraints Prediction
(incl. Software Components)

Authors:
Sneha Saha, Thiago Rios, Stefan Menzel, Bernhard Sendhoff ~ HRI-EU
Jiawen Kong, Thomas Btck ~ L eiden University

Project Coordinator: Professor Xin Y ao, University of Birmingham
Beneficiaries: L eiden University, Honda Research Institute E urope, NEC L aboratories

H2020 MSCA-ITN
Date of the report: 30.09.2020

European

Contents

1o INEFOTUCLION oottt sttt sa s a st se e se et s s sesenens 3
2. Geometric data ManiPUIAtioN........ccoeuevirieererienincrncentretseee et sse e saeseens 6
3.1. 3D point cloud QUEOBNCOAENcvevevveeriereeriereerreeseee st e e sse e e se et e e sseseseeseseseenas 8
3.2. 3D point cloud variational autoencoder (PC-VAE).....ccvvmrverrerenrereneeneeeeneenes 16
4. Surrogate assisted optimization and evaluationc.ccceceeeeererererneenerenrreeeeenes 23
4.1. Improving vehicle design classifiCationccccoevevnevnnenncrenseceseere e 23
5. SUMMAry and OULIOOKccceruruerirreenirierinieentsieestsestsseesteseessesessssesessssessssesessesesessesenes 26
BiblIOZIAPNY ..cuviveeeieeeerteerteetr ettt et et a e e e e e neneas 28
Appendix A ~ Vanilla 3D point cloud autoencoder SCriptS......ccoievrrererereresereseeesesseseseenes 31
Appendix B ~ 3D point cloud variational autoencoder SCripts.......cccoereerererererrerererererereenene 34

Appendix C ~ Improving imbalance classifiCationcccccvrevrevernecenneseseesseseeeeseevenes 38

1. Introduction

In the Experience-based Computation: L earning to Optimise (ECOLE) project, we research novel
methods and smart computational models for capturing the notion of experience embedded in
(engineering) data, which are collected over the course of optimization runs, and exploiting said
experience in similar, yet more challenging, optimization tasks (Figure 1). Our vision of
experience is analogous to an engineer who also learns and transfers her/his knowledge from
previous professional tasks to new and different types of applications. In automotive product
design, this experience is usually shared between humans developing models of different type
(sedan, convertible etc.) to handle efficiently the required criteria from different engineering
domains as well as over the course of car model changes (minor/major model change) to apply
existing knowledge from the past.

I e /
A I
E EE NI IR SIS SBI TS PPN P PP b BT eI

&
———————————— Sation Wagon=7
. et Wagon T
— . mD

oS
=

’

b

/ R i i P S s = Ty L—'//

Figure 1~ Vision for experience-based multi-criteria optimization in the automotive domain

In Work Package 1 (WP1) of the ECOLE project, we focus on the research on experience-guided
optimization in automotive product design, linking scientific questions to industrial problems and
adding a practical perspective to the research tasks. The utilization of experience in optimization
problems comprises a variety of advantages. Thinking of the constantly increasing complexity
during product design and of final products, experience allows the user to assess more accurate
system responses by advanced simulation set-ups, e.g. based on improved feature selections. T his
leads to improved decision-making processes and to an efficient sampling among what-if
scenarios. In addition, computational experience-based models enable the human user to work on
multi-criteria optimization scenarios, where these models support the human user with
complementary knowledge to assist in finding optimal trade-off solutions, e.g. by predicting if (or
if not) solutions violate constraints and fulfill given specifications. More visionary, computational
experience-based models may even coach novice human users to build up their reliable knowledge
base.

Since a few decades, computer aided engineering and design (CAE/D) software plays an important
role in the automotive development by providing an early assessment of the design performance
based on virtual simulations, generating a huge amount of digital design data. Due to the recent
advances in thefield of artificial intelligence (AI), current engineering software development aims

at exploring such existing design data with statistical analyses and machine learning techniques,
supporting the user to quickly generate a large variety of solutions. In optimization problems,
learning the data collected from similar cases, which we see as embedded experience, potentially
can capture the sensitivity of design parameters and regions in the design space that lead to
optimality or novelty, which could be worth exploring. Nevertheless, mining engineering
optimization data is challenging due to many factors: the dimensionality and type of design
representations, the particularities of different types of numerical simulations, and the sparsity of
data considering the design and output spaces defined in such problems. Furthermore, the data is

distributed in different stages of the optimization and thus increases the complexity to extract and
transfer knowledge between different problems.

Transfer learning Shape Generative Models

Bk 033
Initial Solution

Free Form Deformation
Parameterize paLr};)r:aettirs g;ﬁ‘te::rtg
v e, ™ i,

itnem Larire

Geometric Deep Learning

o)l ™

No s . . Design Classification
Optimization 0y
. o T
Evaluate .
” Pl
= Yeis Stops Performance :
\ :";);\ Surrogate Modeling
Optimized Design CAE Simulations
Select
candidates
. . .; ! -M =
| | e) M

|

; ; R Hyperparameter optimization
Multi-objective Optimization yper| 2 o

Figure 2 - Typical loop of an optimization algorithm split into tasks for which new algorithms have been
developed in the ECOLE project.

A typical computational multi-criteria design optimization loop for engineering applications like
automotive development is depicted in Figure 2. Usually a vehicle design is represented by a set
of shape parameters. Design modifications are realized by parameter variations suggested by the
chosen optimization algorithm, e.g. evolutionary optimization, gradient-based optimization among
many others. These representations may either be designed by humans, e.g. CAD or shape
morphing representations [1], or based on features extracted by machine learning algorithms in an
unsupervised fashion. T he latter technique is the focus of the present report.

Our approach utilizes geometric deep learning architectures that automatically extract features
from existing CAE models, reducing the dimensionality of the geometric representation without

relying exclusively on the user expertise or particularities of the underlying physics where the
shape is embedded (Section 3 and A ppendix A, B). Of course, our methods rely on integrating the
cumulative experience of prior vehicle designs using offline learning algorithms, while a purely
human-made representation would be independent of existing data. Following the step of
parameter variation, new shapes are generated using the selected shape representation. Each
generated shape is then processed by computational simulations to assign a performance number
to each design. These simulations typically evaluate multiple criteria, e.g. aerodynamic or
structural performance, using state-of-the-art numerical solvers implemented in industrial tools.
Since these computational simulations may be very time-consuming depending e.g. on applied
numerical mesh resolutions and selected solvers, industrial optimization requires machine learning
methods, which indicate potentially well-performing solutions rather than low-performance
solutions. If low-performance solutions can be reliably detected with methods from machine
learning, the simulation step can be skipped for these designs resulting in major time (=cost)
savings. Thus, we also researched and implemented a classification algorithm for aerodynamic
criteria that can handle imbalanced data for detecting potentially infeasible designs for
computational fluid dynamics (CFD) simulations and which could be extended to other
tasks/criteria within the optimization framework (Section 4 and Appendix C). For closing the
optimization loop, in a final step designs and their parameters are selected from the candidate
solutions. The performance of each design is either represented by a weighted sum of the
performances from each criterion (single-objective optimization) or by a set of performance values
that span a multi-dimensional so-called Pareto space (multi- or many-objective optimization).

Representations Experience based computation - -
Point clouds (@ —— ° Online learning o Learned _,I@Pfi“:"f* New
Mesh N— @ * Offlinelearning @ . %! model | learning model

dddd

Digital A
l data !
i
‘Shape morphing i ile ®e
°
. Hyperparameter : .y
FFD I . . ij®e ®
= Tl configurations =
arget shape % g . v
matching -) i o :
; i
Design generation | !
L)
+ ¥
Design Evaluation Design Selection
* Class imbalance ot * Multiobjective !] as Y
d“sg:;tionl . S o chtin':iz;tion / i \"_. ot = A
. analysis g g, * Robust [% :
optimization e)
Final design

Experience and Knowledge Boost

Figure 3 ~ Workflow for the generation of vehicle design prototypes split into tasks that were addressed with the algorithrms
developed inthe ECOLE projects

Each of the steps in the optimization cycle comprises the implementation of state-of-the-art
algorithms and the algorithms proposed within the ECOLE project, comparative tests on
benchmark and (close to) real-world data, and finally publications at international conferences by
the Early-Stage Researchers (ESRs). Figure 3 provides a more detailed overview on algorithms
researched in ECOLE, which realize parts of the design optimization loop.

In this report, we present the current state of the multi-criteria design optimization framework
focusing on the experience-based aspects of feature learning/adaptation and classification of
imbalanced data. For each aspect we provide details on the scientific background of the developed
methods and introduce the software components that were implemented. The remainder of the
report is organized as follows: In section 2, we introduce 3D shape representations as well as
benchmark and engineering data that we used for our research. In section 3, we describe the
methodology for learning from cumulative existing data and experiences enabling the generation
of solutions. In section 4, we demonstrate an efficient classification methodology for detecting
infeasible designs in imbalanced data. Section 5 concludes the report. In the A ppendix, details are
provided on the developed software and on how to use the different components.

2. Geometric data manipulation

Generating and representing geometric data in a computational environment is central to many
engineering processes in the automotive industry, from initial design through engineering
development and analysis to manufacturing phases. Y et, the representation of 3D shapes is not
canonical and often depends on the experience of the user as well as on the application. For
example, surface and volume meshes predominate in 3D shape optimization problems that require
computer aided engineering (CAE) simulations. In CAE, the physical domain is often discretized
as meshes as a basis to solve the system of equations required to calculate e.g. flow fields or
structural stiffness. However, for creating the geometries in computer aided design (CAD)
software, engineers often prefer constructive solid geometry (CSG) as the representation, due to
its intuitive applicability. For the research within ECOLE, we mainly explored two types of
representations for computational processing: 3D polygonal meshes and 3D point clouds (Figure
4).

Figure4 - Car representation in 3D polygonal mesh and in 3D point cloud

While the use of meshes is justified by the applicability in engineering tasks, point clouds emerged
as a generic type for representing 3D shapes from the literature on geometric deep learning as
being efficient for machine learning tasks [2], [3]. Furthermore, we can easily extract point clouds
from engineering meshes by sampling the nodes, which allows for connecting multiple software
components in the optimization process. In terms of data sets, we opted for benchmark data as
available in ShapeNetCore [4] and the TUM DrivAer model [5], [6], which we already employed
in a computer fluid dynamics (CFD) simulation framework.

For manipulating the geometric data, we implemented different software components, which are
detailed in[7]. In the present report, we focus on the application of geometric data in optimization
tasks and provide details on the learning and adaptation of 3D shape features. Furthermore, we
outline classification methods for imbalanced data to support multi-criteria optimization. In
addition, we provide information on the different software components to enable other research
groups to utilize them in their work.

3. Learning 3D shape features from engineering data

Feature engineering is important for processing CAE data, but it is time-consuming and labor-
intensive. As an alternative to manual feature extraction using shape descriptors, geometric deep
learning architectures, such as (variational) autoencoders, learn in an unsupervised fashion a low-
dimensional set of latent features. The 3D geometries are reconstructed from samples in the latent
space, which can be explored in shape optimization problems for reduction of the dimensionality
and as shape generative models.

) Autoencoder)
Mesh data set Point Cloud data training Reconstruction
sampling Pkl |’ y kA

Shape T Surrogate

interpolation optimization GisiiliEaten modeling

Figure5 - Potential applications of geometric deep learning models for shape analysis and engineering optimization.

Geometric deep learning is an umbrella term for algorithms that learn on 3D geometric data.
Differently to the 2D image domain, most of the geometric representations are non-E uclidean
(unstructured) and invariant to the ordering of the elements. They require more sophisticated
architectures and special machine learning algorithms, which distinguishes geometric deep
learning from the standard set of deep learning methods. T he literature on geometric deep learning
provides architectures that handle different types of input data [2], [3], but as previously discussed,
we opted for processing geometries as 3D point clouds, due to the flexibility of the representation.
Thus, we aimed at researching and developing geometric deep learning models, in particular 3D
autoencoders, for processing 3D point clouds.

3D point cloud (variational) autoencoders were recently introduced as powerful shape generative
and data compression techniques [8]. T hese architectures comprise an encoder, which reduces the
dimensionality of the point clouds to a compact set of latent variables, and a decoder, which

recovers the cartesian coordinates of the points from the representations in latent space. T he latent
variables learned by the autoencoder are applicable to shape optimization problems as design
parameters, performing similarly to state-of-the-art representations, such as free form deformation
[9], [10]. Furthermore, these variables encode the distribution of the training data in the input space
and potentially comprise enough information for fitting secondary surrogate models that map these
variables to engineering performance metrics, such as aerodynamic forces. In the following
subsections, we present the architectures and our research results of the standard and variational
point cloud autoencoders that we propose for learning 3D shape features in an unsupervised
fashion. Additionally, we provide first insights into their application to multi-criteria design
optimization.

3.1. 3D point cloud autoencoder

3.1.1 Details on the 3D point cloud autoencoder architecture

As explained above, in the following we represent 3D car shapes as sets of 3D point clouds each
given as Nx3 points (N: number of points), which we use to extract features provided through the
latent parameters of our autoencoders. One of the main challenges for developing the architecture
of a3D point cloud autoencoder is the non-E uclidean nature of the point clouds. In order to learn
features that are invariant with respect to the ordering of the points, we opted for an architecture
with point-based operators [2], similar to the work presented in [11]. The encoder comprises five
1D convolutional layers, which operate pointwise on the Cartesian coordinates, followed by a
maximum pooling operator, which processes the activation of the last convolutional layer in a
feature-wise fashion and yields the latent representation. The decoder comprises three fully
connected layers that recover the Cartesian coordinates from the latent variables, and also
corresponds to the section of the network with the highest number of trainable parameters (Figure
6).

L(128) —
256 Latent Space
Ej 28. ——‘ Z e [-1,1]* Layer | Input dimensions Operation Activation Outpul dimensions
2 I | 1 I 0 Nx3 Input None Nx3
x }’J ' 1 Nx3 1D-C Rel.U Nx64
’ 2 Nx64 1D-C RelU Nx128 %‘3‘
3 Nx128 1D-C Rel.lU Nx128 g
4 Nx128 1D-C RelLU Nx256 =
f 5 Nx256 IDCtanh Nx128
’ 6 Nx128 maxpool None 1X128
7 128x1 FC RelU 256x3 _g
1D conv, 2 . 8 256x3 FC RelU 256x3 3
relu | maxPool iR, Sk 9 256x3 FC sigmoid Nx3 a
1D cony, — FC 256, relU 10 Nx3 output None Nx3

tanh
T

Encoder

Figure 6 - Details of our 3D point cloud autoencoder architecture. In the table,

T

Decoder

N indicates the size of the point cloud.

Compared to the proposal in [11], we modified the activation function in the last convolutional
layer from rectified linear units (ReLU) to hyperbolic tangents. Thus, it restricted the latent
variables to the space §8E-%=9# thereby easing the formulation of constraints for performing shape
operations in the latent space. Furthermore, we added a sigmoid function to the last fully connected
layer, constraining the output space to [0,1]3, which is the same as the normalization of our input
data. We maintained the dimensionality of the remaining layers as proposed in the reference work,
since we did not observe any issues during the experiments that could be caused by these
parameters.

3.1.2 Validation of the 3D point cloud autoencoder architecture

Before applying the autoencoder to engineering problems, we validated the architecture by training
the autoencoder on the car class of the ShapeNetCore data set [4], sampled uniformly to 2048
points. We opted for the standard Adam Optimizer [12] as training algorithm, with a learing rate
{2 ERE P momentum terms {BRa C§land {$;:R3 L8, and the epochs limited to 500. The
shapes in the data set were randomly split into 90% and 10% partitions for training and testing the
autoencoder, respectively, which were organized in batches of 50 shapes. We computed the point
cloud reconstruction losses using the Chamfer Distance (CD) [13], which is invariant to the
ordering of the points and thus can handle unorganized sets of point clouds. The hardware used
for training and testing the model was a machine with 2 CPUs Intel X eon Silver 4110, clocked at
2.10 GHz, with4 GPUs NV IDIA GeForce RTX 2080 Ti. The architecture was implemented using
Python scripts based on the TensorFlow 1.14 library for operating in graphic processing units
(GPUs).

After training the model, we compared the mean reconstruction losses on the training and test sets
to the value of the losses reported in [11], and we obtained a reduction from 3.34E-04 to 2.91E-04
and from 4.00E-04 to 3.03E-04, respectively. Additionally, we visually inspected the
reconstruction of random samples in the data set (Figure 7) and interpolations between each of the
samples, by which we confirmed that the autoencoder learned the car shapes in the data set.

Figure 7 - Reconstruction of sarmples taken fromthe car class of ShapeNetCore [14]

3.1.3 Efficiency of our 3D point cloud autoencoders in shape optimization

Based on the successful validation of our architecture, we assessed the efficiency of using the
latent features (variables) of our 3D point cloud autoencoder as design parameters for target shape
matching optimization problems [15]. Therefore, we generated a synthetic data set of shapes by
deforming a benchmark car surface mesh using free form deformation (FFD) [16], whichis a state-
of-the-art method for shape modifications used in engineering design optimization. 500 deformed
car surface meshes have been converted to point clouds and used to train our autoencoder. We
opted for the synthetic data for three reasons: First, we could compare the degrees of freedom

9

learned by the latent variables to the FFD parameterization, since we had control over the number
of data set features. Second, we could control the difficulty to match the target shapes and explore
the potential of the autoencoder to extrapolate the features learned in the training set. Third, since
the data set comprised isomorphic meshes, we could enforce the ordering of the points during the
training, which allowed us to quickly reconstruct the meshes from the point clouds generated by
the autoencoder. T he conEguration of the FFD lattice used in the deformations contains six planes
in x- and z-direction, and four in y-direction. To deform the shapes, we considered only the axial
displacement of the planes and symmetry with respect to the geometric center of the car,
simplifying the parameterization, which yielded 8 parameters (Figure 8).

Figure8 - FFD parametrization used for generating the data set and in the target shape matching optimization

We divided the analysis into two optimization experiments, both performed for the FFD and
autoencoder parameterization, and using the covariance matrix adaptation evolutionary strategy
(CMA-ES) as optimization algorithm. In the first, we selected target shapes generated with the
proposed FFD parameterization, such that the optimization with either the FFD or autoencoder
representation could converge to the target shape. Hence, we could compare the convergence speed
and quality of the final designs. In the second, we generated a new set of target shapes, by
parameterizing the position of the control points in the y- and z-direction as harmonic functions of
their position in the x-direction. T herefore, matching the target shapes would be challenging with
any of the representations and we could evaluate the capability of the autoencoder to extrapolate
the learned features.

In the first scenario, both representations converged to the target shapes, as expected, and the
optimizations with the latent variables outperformed the FFD representation, achieving about 30%
better fitness, even in the cases which showed the weakest performance of the autoencoder.
Nevertheless, reconstructing intermediate results of the optimization, the autoencoder yielded
meshes with a high level of noise (Figure 9), which is prohibitive in optimization problems with
computational engineering simulations, such as CFD.

Figure 9 - Reconstruction of car shapes obtained with the autoencoder after 10, 20, 30 and 70 generations of the optimization
(fromthe left to the right).

In the second scenario, the optimization achieved a local optimum with both representations, which
was also in line with our expectations. Although numerically similar, the quality of the meshes
obtained at the final optimization stage with each optimization was considerably different (Figure
10). Similar to the initial stages in the previous scenario, the autoencoder yielded a mesh with
severe distortion and multiple intersections of elements. These results can be explained by the
differences in the parameterizations: While the formulation of FFD ensures continuity and
smoothness of the surfaces up to a certain degree, the reconstruction losses computed when
training the autoencoder do not consider any global aspect of the geometry. T herefore, when the
latent representation is driven to a region that is not represented in the training set, the
reconstruction of the point clouds present a higher level of noise and collapse in more extreme
cases.

FFD Parameterization PC-AE Parameterization

-
(]

b
=1

o
)

Objective Function Evaluation
Objective Function Evaluation
o
o

0.61 /l B : o o s
0 LA R R S S S N
(A t1 B 1 & s O O Y A s O
0.24 [L [L o0.2 l - _L L
" 4 L — o o o - 1 5 1 - o &
0.0— : . g . | 0.0! : . I
‘o ») k] B2 % @ o] b % o %)

Generations Generations

Figure 10 - Comparison between the normalized objective function at different generations and mesh reconstruction of the fittest
individual obtained with the FFD and autoencoder representations

From our experiments, we concluded in general that the latent representation obtained with 3D
point cloud autoencoders has the potential to increase the speed and quality of results in shape
optimization problems. Nevertheless, the feasibility of the shapes generated during the process can
be limited to the region in the latent space learned during the training phase, which hinders the
generation of uncommon or novel shapes. It also impacts the selection of software components for
the overall framework proposed for the project, which should also consider algorithms for
detecting infeasible shapes for downstream engineering tasks. In addition, meshes should be
recovered from autoencoder-based point clouds in the general case, when the point clouds in the
data set do not share a common underlying structure, such as with isomorphic meshes.

3.1.4 Scalability of 3D point cloud autoencoders

Another aspect of the architecture and training algorithm that we analyzed was the scalability to
higher-dimensional CAE models [15]. In the literature, the work on 3D point cloud autoencoders
typically deals with point clouds that range between 1024 and 4096 points, while complex
engineering meshes can easily comprise millions of nodes. Hence, in this second study, we
formulated as objectives to define the maximum point cloud size that is supported for training the
proposed architecture, and to propose a re-sampling strategy to reduce the dimensionality of the
point clouds prior to the training, such that higher-dimensional models can be learned. The

hardware available for the experiments was a machine with two Intel X eon CPUs, clocked at 2.10
GHz (16 cores, times 2 hyperthreaded), using a single Nvidia Quadro RTX 8000 GPUs (48 GB).

For determining the maximum point cloud size, we performed a run-to-crash experiment, where
we iteratively started the training algorithm for 20 epochs while gradually increasing the point
cloud size, until the script stopped working. With this setup, we achieved a maximum point cloud
size of 200000 points, with an average GPU memory usage of (45.38 € 19.91)% and elapsed time
of 450s for 10 epochs. Regarding the data set, we also adopted synthetic data generated from a
parameterized plate (Figure 11), such that we could control the geometric features contained in the
data and refine the models up to 25,000 nodes. When the run-to-crash experiment exceeded the
number of points in the models, the sampling algorithm automatically allowed the replication of
sampled points, since we focused on the computational demand rather than the accuracy of the
model.

Secondary axis - Principal axis

X5 ! ®
> X
i

¥ X, Meshing and refinement

f

Figure 11 - Schematic of the parameterized plate used to generate the synthetic data set

For the re-sampling techniques, we considered two approaches: the random uniform sampling
(RUS) and a high-pass filter (HPF) technique. In the RUS approach, all mesh vertices have the
same sampling probability, therefore, it does not favor any geometric feature, but the regions with
dense mesh refinement. The HPF technique was based on graph filtering proposed in [17], which
increases the probability of sampling vertices close to severe shape transitions, such as corners,
operating as an edge detector. T he underlying motivation was that the HPF would yield a skeleton-
like structure that could be used to differentiate the shapes and thus improve the training of the
autoencoder. In order to account for the effects of the architecture and point cloud size, we
considered three point cloud sizes (2048, 4096 and 8192) and three sizes of latent spaces (8, 16
and 32), and evaluated the mean values of the Chamfer Distance computed on a test set with 100
shapes, sampling with RUS and HPF techniques.

Analyzing the losses for training and testing data sets, we observed differences, both with respect
to the sampling scheme and the results obtained with the previous data set. First, the models needed
to be trained for more epochs and with data set augmentation to achieve the same range of
reconstruction loss as in the previous study, even though the shapes in the data set had a lower
degree of complexity and shared many geometric characteristics. Second, RUS led to better
performance on the test set, but the advantage over HPF was reduced with increasing
dimensionality of the point clouds, which is expected, since the point clouds sampled with HPF
became more similar to the models sampled with RUS. However, when testing on the shapes
sampled with alternative techniques, the model trained on point clouds sampled with RUS
outperformed the HPF sampling in most of the cases, especially with lower dimensional latent
spaces and point clouds (Figure 12). Our conclusion was that RUS yields point clouds with more

information about the global structure of the geometry, while HPF concentrates on specific
features, which reduces the generalization capability of the model.

PC sampled PC sampled [wigr _ t/ 30 /Sw it /S1iom

using RUS using HPF 1'3’853 iz H%%ﬁﬂ 2hr L AR
Model trained ihen 5 a’l}é e SO 58 Wl
using the HPF Hh 1S UNEOHE hid LA
datasct ¥4 HED BhLIhOdE B5h LSS0

A e b 1ZLnbOEE ZBh L3E0HE
using the RUS 4688 HED R LAvEIFE it Lndh O
dataset. § h #EE LW hsL3Eo
Ph ZnbOHE HEE LNERIEE

Figure 12 - Reconstruction of geometries using the architectures trained on different data sets. The blue markers indicate the
points of the input point cloud. In the table, CDi,j indicates the Chamfer distance of the model trained on data set i and tested on
data [18]

Third and last, we analyzed the Pearson correlation coefficient between the parameters used to
generate the data set and the latent variables of the model trained on point clouds with 8192 points
and an 8-dimensional latent space (Figure 13). Although we expected the model trained on point
clouds sampled with HPF to yield higher correlation values, there was no major difference between
the results obtained for both sampling schemes. Furthermore, both cases indicate redundancies in
the correlation with data set parameters, which could hinder the performance of the representation
in shape optimization problems.

X1 X2 X3 X4 X1 Xz X3 Xy

Lv, 013 -0.08 -0.06 048] Lv,- 012 003 005 0.05 e ‘g
LV, =048 -0.18 012 012 LV,- 0.07 [0.340:41 -0.02 I -
LVs--0.05 -0.30 0.01 016 LV;--0.00 0.14 004 019 | -04 &
v, 10507 0.07 0.18 008 Lv,- 0.06 023 0.08 0.1 5
LVs 1049 0.02 -0.09 -0.03 LVs-0.14 0.08 -0.14 -0.13 o8 5
LVe - 0.00 -0.00 0.00 0.00 LV --0.20 -0.08 -0.02 |0:52 ——0‘45
Lv; --0.12 -0.06 026 018 LVv;- 0.05 -0.10 0.29 -0.10 H_O‘SE
LV3-0.21 -0.01 0.01 LVg--0.23 -0.09 -0.21 0.16 3

Figure 13 - Pearson correlation between the design variables xi and latent variables (LV) obtained fromthe network trained on
the RUS (left) and HPF dataset (right).

3.1.5 Featurevisualization in 3D point cloud autoencoders

As a consequence of our results of the scalability study, and in order to evaluate and understand
effects of changes in the point cloud architecture, we proposed a method for visualizing the features
learned by the point cloud autoencoder [19]. We based our proposal on the properties of the 1D
convolution, which operates in a point-wise fashion and thus allows for a straightforward mapping
of the input points to the corresponding activations in the layers of the encoder (Figure 14). Here,

we defined a network feature as the set of activated values of neuron {&t a layer Jtor all points in
the input point cloud, which corresponds to a column of the heatmap shown in Figure 14. In order
to visualize a network feature, we projected the corresponding activations as colormaps onto the
3D scatter plot of the input point cloud that yielded the activations. Our expectation was that the
activation would highlight geometric patterns in the point clouds, similarly to the features revealed
in the layers of image processing networks. Then we could use these to interpret the geometric
characteristics encoded in the latent layer.

r g-l Feature 1 ol 1ayer £ pm = == == = o= -

Autoencoder Encoder architecture 2 -y !

¥au
s w1 ‘ LI~
b it ik

Point Cloud

Actvation 1 -

map ¥, [NxL]

Figure 14 - Workflow of the proposed method for visualizing network features as colormaps projected onto the 3D representation
input point cloud.

For the purposes of this study, we limited our analyses to the last convolutional layer of the
encoder. Instead of learning higher-level features, the latent representations are extracted
immediately after this layer with a maximum pooling operation. Therefore, the higher the
activation value in a feature j, the more important is the corresponding input point for that feature.
T his makes the interpretation of the latent variables easier. For our experiments, we used the shapes
in the car class of the ShapeNetCore repository [4], sampled with 2048 points, trained with the
same hyperparameters of the aforementioned validation experiment (3.1.2) and for three sizes of
the latent space: 2 (LR2), 10 (LR10) and 20 (LR20). We also only considered geometries with
reconstruction losses close to the most frequent value obtained for the training set, avoiding over-
and underfitted samples. We clustered the remaining geometries based on their latent
representations, such that we could identify patterns of co-activations, easing the interpretation of
the features.

At first, we visualized the features calculated with model LR2 for four shapes sampled from
different clusters (Figure 15). We observed that the activations highlighted similar regions in the
input space rather than revealing any complex structures, e.g. wheels or side mirrors. Our
interpretation was that the features that yield the latent variables map the occupancy of the input
space and not geometric patterns, which was what we initially expected.

Point Cloud Feature 0 Feature 1 Point Cloud Feature 0 Feature 1

Figure 15 - Visualization of the features calculated with model LR2 for shapes sampled from different clusters in the latent space.
The brightest colors indicate higher activation values.

Cluster 0 Cluster 2

Cluster 1

The features visualized for model LR2 fit the characteristics of the 1D convolution, which
processes the points individually and thus does not capture large-scale geometric properties. In
order to confirm that the latent variables map the occupancy of the input space, we performed a
second experiment, where we gradually shifted and rotated a single geometry in the input space
and visualized the features for different positions (Figure 16). While the shape was moving, the
activated region in the point clouds remained static with respect to the input space, confirming our
hypothesis.

+0.00 +0.05 +0.10 +0.15 +0.20 420 38754 25,00

s ool ool ool ol ol | ol o W W W
e R D D D | D D D @ @

Figure 16 - Visualization of the features obtained for a car shape shifted in the x-direction (left) and rotated around the vertical
axis (right) with different steps as input and using model LR2. The brightest colors indicate higher activation values.

Additionally, we performed transfer of network features obtained for different shapes considering
the model with a latent size of 10 (LR 10). Our goal was to verify the correspondence between the
transfer of geometric and network features, and we observed that this assumption is only valid for
cases where the shapes share similar occupied regions in the input space. Otherwise, the decoder
fails to reconstruct smooth car-like shapes, which indicated that the decoder recovers the Cartesian
coordinates of the points based on the combination of occupied regions in the input space. When
the transferred network features yielded the representation of an uncommon distribution of points,
compared to the training data, it forced the decoder to extrapolate the learned features, which led
to fuzzy point cloud reconstructions.

Finally, we analyzed the visualization of combined network features, calculated on a dense
uniform lattice, and compared them to the most frequently occupied regions in the training data
(Figure 17) calculated using a K ernel Density E stimator (K DE) model [20]. Our expectation was
that the combination of features would reveal similar results to the KDE, since the features map
the occupancy of the input space. However, the analysis revealed that the features defined nearly
the boundary of the most frequent car shape with the model LR2, and gradually highlighted other
regions of the input space with increasing number of latent variables. Our interpretation was that
for a more intense reduction of dimensionality, as for model LR2, the autoencoder learns

15

preferably how to differentiate the shapes, which yields the observed boundary in Figure 17. When
the dimensionality of the latent space increases, it allows the encoder to describe the shapes as a
combination of finer regions and thus other regions of the input space become activated.

I
I
i

LR2 LR10O LR20

Figure 17 - Visualization of the KDE score (central car shape) and combined features of a dense uniformlattice in the input
space. For visualization purposes, the size of the markers varied with the value of the metrics, redundant to the colors. In the
representations, the lightest color indicates the highest values for both metrics.

3.1.6 3D point cloud autoencoders software components

Besides the scientific publications, the work on the 3D point cloud autoencoder yielded two
important software modules for the ECOLE project. First, we developed a reliable algorithm for
training and testing a 3D point cloud autoencoder, which can be implemented in engineering
analyses for learning features for dimensionality reduction or as a shape generative model. Second,
we provided a method for visualizing the features learned by the encoder, which provides an
interpretation of the information abstracted by the autoencoder and can guide future modifications
in the architecture. T he current work focuses on two aspects that are central to the implementation
of the autoencoder in engineering optimization pipelines. On the one hand, we aim at recovering
meshes from autoencoder-based point clouds, when the data set does not comprise isomorphic
meshes, as in the ShapeNetCore repository, since most of the CAE simulations require meshed
representations of the shapes. On the other hand, our objective is to quantify the information
contained in the latent variables on engineering performance metrics, such as aerodynamic forces,
so that we can tailor the latent space for specific engineering optimization problems. Our
implementation of the point cloud autoencoder and how to use it is detailed in the A ppendix A.

3.2. 3D point cloud variational autoencoder (PC-VAE)
3.2.1. Details on the 3D point cloud variational autoencoder architecture

The VAE [21], [22] is a generative model that, opposed to a standard AE, aims at learning
“disentangled, semantically meaningful, statistically independent and causal factors of variation
in data_ [23]. The VAE may be seen as a regularized version of the AE that forces the learned
latent space towards following an a-priori specified distribution. Prior research on VAEs which
are closest to our goal of generating novel and diverse shapes is CompoNet [24], a generative
neural network for 2D or 3D shapes based on a part-based prior, which relies on a VAE for 2D

16

shape synthesis and the above mentioned AE+GMM for 3D objects. Zamorski et al. [25] proposed
an end-to-end solution to generate 3D shapes with an adversarial autoencoder (AAE) for 3D point
clouds using a binary representation in the latent space. The AAE differs fromaVAE in the loss
computed on the latent space, where the AAE uses the adversarial loss similar to a generative
adversarial network (GAN) while the VAE uses the K ullback-L eibler (K L) divergence to enforce
regularization of the latent space. In our work, we target on the one hand the extraction of features
from 3D shape data sets in an unsupervised way and on the other hand the generation of diverse
solutions for further simulation and analysis in a vehicle design framework. T o fulfill both targets,
we propose a variational autoencoder for 3D point clouds (PC-V AE).

The PC-VAE used in our experiment is implemented based on an architecture presented in [8],
[13], which extends a proposal in[10], [15] (Figure 18). The encoder part of the PC-V AE follows
[11], [26], who propose to use 1D-convolutional layers together with permutation-invariant global
operators (e.g., max-pooling at a deeper layer of the network) in order to make the architecture
invariant against permutations in the input point clouds. T he encoder-decoder structure used here
is similar to the architecture proposed in [11], only the last layer of the decoder is replaced with
sigmoid activation functions [10] to normalize the coordinates of all points to the range [0.1,0.9].
In our encoder, we use five 1D-convolutional layers, each followed by a ReLU [27] and a batch
normalization layer. T he decoder consists of three fully connected layers.

RelU
Sigimoid

L M0, 1) Batch Normalization

MaxPool layer

[it! 128 ¢
L0 128 :
256 128 L 256 256

E~pt+axe

Input Output

Figure 18 - Overview of the generative PC-VAE for generating designs, shape analysis and engineering optimization.

T o modify the autoencoder architecture in [10], [11], [15] to become variational autoencoders, the
output of the last convolution layer in the encoder is passed to a max-pool layer that produces a
k-dimensional vector that forms the bottleneck for two separate k-dimensional vectors: a mean
vector | and a standard deviation vector. The mean vector has no activation function, while the
deviation vector uses a sigmoid activation function. A vector sampled from the latent distribution
is fed into the decoder network for reconstruction of a point cloud and is represented as a vector
{#0 HiE AR wWhere {8 {#B2T he PC-V AE minimizes the loss function between the input point
cloud, {3 and the reconstructed point cloud, {7 as

T B @ 18 (B VRN

where the first term on the right-hand side denotes the reconstruction loss, measured by the
Chamfer distance (CD).

BB R dpap @ BEGEE g h @ BEHE

(1

and the second term is the K ullback-L eibler (K L)-divergence that quantifies the distance between
the learned latent representation and the prior. Both terms of the loss function differ by several
orders of magnitude. To bridge this gap, two parameters and ¢ are introduced to scale the
reconstruction loss and K L-divergence, respectively.

We tested our approach on an autoencoder trained on the car class from ShapeNetCore [14],
varying the dimensionality of the latent space. We concluded that the layers of the encoder map
the occupancy of the input space rather than complex geometric features [15], [19]. Tuning the
parameters of the loss functions is an important aspect to overcome mode collapse in VAE and
also to improve reconstruction of the geometries. We used a hyperparameter optimization
technique (OPTUNA) [28] totune and § in equation (1). We also used a grid search and arrived
at parameter values of =250 and § = 0.001, which resulted in an acceptable trade-off between
the reconstruction accuracy and divergence in the latent space. T he workflow to train a PC-VAE
and python scripts are explained in A ppendix B.

3.2.2 Validation of the 3D point cloud variational autoencoder architecture

To validate the implementation and function of our proposed PC-VAE model, we compared its
generative performance to that of existing models as reported in the literature, speciEcally aregular
AE [11] and a3D-Adversarial AE (3dAAE-G) [25]. As no prior work was based on 3D car shapes,
we re-trained our model on the chair class of the ShapeNet data set, split into 85 % training, 5 %
validation, and 10 % test-split to match the settings to the reference models from the literature. We
calculated the MMD-CD between the reconstructed point clouds and their corresponding ground
truth in the test data set of the chair object class (T able 1). The resulting MMD-CD values indicate
that our model is comparable to existing models regarding the ability to encode and reconstruct
the data set, so that in a next step, we can evaluate the model s generative capabilities with respect
to realism and novelty of generated shapes.

Table 1: Comparison of the reconstruction capability between our PC-VAE and reference models.

Methods MMD-CD

PC-VAE .0008

AE [10] .0011
3dAAE [20] .0008

3.2.3 3D point cloud variational autoencoder for generating realistic and novel shapes

Once we have our trained model, we aim at generating both realistic and novel shapes, as both
aspects are central to application in the engineering domain. In other words, a model should
generate plausible shapes, i.e., shapes that in some aspects closely resemble the shapes in the
dataset, but also novel or diverse shapes that are sufEciently distinct from the shapes used for
training. T he trained generative PC-V AE (defined in section 3.2.1) can be used to generate a large
amount of design samples either by sampling from the latent space or by interpolating in the latent
space (as shown in Figure 19). To use a generative model in the engineering design process, the
model has to be able to generate realistic and novel shapes. In our research, we therefore explored
methods to enforce the generation of such realistic and novel shapes. From the trained PC-V AE
we generate a set of new shapes ({8 either by interpolating in the latent space or by random
sampling of the learned distribution in the latent space. Further, we explained methods to evaluate
realism and novelty of this generated shapes.

Input point clouds

Latent space exploration -

|
.
T jl - Interpolation/ sampling
|
z L]
| -
-~
g ! Surrogate modelling,
Output point clouds Optimization

Figure 19 - Application of PC-VAE for design generations and evaluations.

Evaluating the realism of the shapes - To quantify the “realism_ of a generated shape, Berthelot
et al. [29] proposed a mean distance (MD) metric in 2D that compares the minimum cosine
distance of the interpolated data-points with the original data-points by Ending the nearest neighbor
of each interpolation step in the training set. Similar to this approach, Achlioptas et al. [11]
proposed a minimum matching distance (MMD) metric to measure the closeness of two-point
cloud sets using the Chamfer distance (CD) [13], where closeness between sets is assumed to
indicate a higher realism. Besides following the same idea as the MD metric, closeness measures
the distance of each point in a point cloud set to its nearest neighbor in another set using the
Chamfer distance (CD). This measure is similar to the mean distance (MD) measure but uses
Chamfer distance (CD) to measure closeness between two-point cloud sets. So, we used this
approach to measure the realism of the generated shapes using PC-V AE. To also quantify realism,

we propose to employ the method introduced in [11], [29], who measure the feasibility of shapes
by the mean distance between the shapes generated through interpolation in the latent space (refer
to as set & and the shapes in dataset %

We hypothesized that the PC-V AE due to the applied regularization learns a smoother latent space
compared to the AE model, which should lead to the generation of more realistic car shapes when
reconstructing random or interpolated samples from the latent space of the PC-V AE compared to
the AE [30]. To test this hypothesis, we compared reconstructions from a 10-step linear
interpolation between 50 randomly selected pairs of car geometries from the data set S using both
our PC-VAE and the AE (Figure 20). Each interpolation pair consisted of an initial shape A and a
target shape C, as well as an intermediate shapes B, which were reconstructed from the
interpolation in the |atent space.

MMDR-CD (104

. Ilnr.-r|'|-|.|:|-\;\ steps

A B C D
Figure 20 ~ (A): Initial shape. (B): Interpolation between shapes (A) and (C) in 10 steps” reconstruction of the interpolation at
steps 2, 4, 6, 8, and 10. (C): Target shape. Top row: Reconstruction of the interpolation using the proposed PC-VAE. Bottom row:
Reconstruction of the interpolation using the proposed PC-VAE. Bottom row: Reconstruction of the interpolation using the AE.
(D): MMD-CD measure for 50 randomly selected car pairs (each with 10 interpolation steps) using AE and PC-VAE (shaded areas
indicate the standard deviation).

We Erst evaluated the generated shapes qualitatively by visual inspection. We show one example
(Figure 20 (A), (B), (C)), where we observed a major difference in the roof region. A first visual
inspection shows that the intermediate interpolations performed in the AE latent space lead to a
slanted roof as well as to dents in the roof region of the car shape. T he interpolation with the PC-
V AE induces a more gradual change in the roof region and mostly maintained the curvature of the
roof, in total leading to more realistic interpolated car shapes.

To also quantitatively assess the difference of the generative capability between AE and PC-V AE,
we calculated the closeness (MMD-CD) between the samples generated for each interpolation and
the samples in the complete dataset 4% Figure 20 D shows the MMD-CD over all 50 interpolations
for both, AE and PC-V AE. A statistical analysis verified our results that interpolated shapes with
PC-VAE generate lower MMD-CD compare to baseline AE, see further details in [30]. Overall,
the PC-V AE showed a lower MMD-CD compared to the AE, indicating that the interpolation led
to shapes that were more similar to the training set shapes and hence produced more realistic cars.

Identifying novel shapes using a classifier - Building a surrogate model on the latent
representation defines a supervised learning problem to extract the relation between the input and
output. Surrogate modelling yields an easier mechanism for predicting the system’s response for
a new previously unobserved input, which can be subsequently used to accelerate downstream
tasks such as optimization loops and quantitative evaluations. T herefore, after testing the capability

20

of the PC-VAE to generate realistic shapes, we evaluated the diversity/novelty of the generated
shapes using a classifier based surrogate model (as shown in Figure 21 (A)).

To quantify the diversity/novelty of generated shapes, {& we used the diversity measure presented
in [24]. Similar to the approach outlined there, we trained a binary classifier on the latent
representation of the whole dataset {5 where the information whether a sample belonged to either
the training set, {&umsss Or test set, B Was used as the label. The diversity is then calculated as
the percentage of generated samples, {& that are classified as belonging to the test set. In other
words, the classifier quantifies the percentage of samples generated by the model that are closer to
the unseen test set than to the training set. T he higher the number of generated samples classified
into the unseen test set, the higher the diversity of the model. Here, we used a multilayer perceptron
(MLP) with two hidden layers [100, 60] and a tanh activation function for the hidden layers.

& Trakning sample

Testsample

train

« generated sample x

Pi (1= p) - TR AL]
A D &
e ; o i
classify ¥ L_.ﬂ::l ~ é\ i
: — T, =
FR— e e S T ST
c""”"’{::‘r‘l"mp!” Py - probability of s cample fg R $3 W :qxg.u':h'.h S .,::ﬁ
- helonging to test class
Baseline AE +GAMM
A B

Figure21 = (A): Schematic overview of the generative diversity evaluation. (B): Qualitative comparison of generative diversity of
PC-VAE and baseline AE+ GMM. Row 1: Three randomly selected shapes fromthe generated samples. Row 2-4: Nearest neighbors
of the generated samples. Row 2-4: Nearest neighbors of the generated shapes in the training set (measured by CD).

Table 2: Comparing generative diversity of the PC-VAE and the AE+ GMM (baseline). Best generative diversity for each train-
test-split shown in bold.

T rain- test split AE+GMM PC-VAE Encoder
50/50 40.3 € 0.80 58.19€ 0.19
70/30 21.78 05 26.96 é 0.8
90/10 40603 6.5 € 0.08

We repeated the experiment ten times. T he averaged percentage of generated samples classiEed as
belonging to the test set are shown in Table 2. For all train-test-splits, the PC-VAE generated
shapes with a higher diversity than the baseline model. For an additional, qualitative evaluation of
the generative diversity of the models, we randomly selected three generated samples from each
model and searched for the three nearest neighbors of each shape in the training set, sz (Figure
21(B)). Both models generated realistic shapes, however the PC-V AE generated shapes were more
dissimilar to its nearest neighbors in {&ss compared to the baseline model.

21

In [30], we also tested our architecture for its ability to generate a novel type of car shapes using
the classification technique. This methodology helps to determine the model s capability to
generate unseen novel shapes. We re-trained the PC-VAE and the baseline AE on the car class
after manually excluding all pickup truck designs from the data. T he pickup truck shapes present
in the data set are a combination of convertibles and coupe-like car designs (see Figure 22 (A) for
examples). We used the separated pickup truck shapes as the test set, {&sgg (630 shapes in total).
We generated 1800 samples (three times the size of {Hg, &, from the trained PC-VAE and
baseline AE+GMM. We then retrained the ML P classiEer on the new {Zsssssand {FHgmeto calculate
the diversity of the generated shapes. Furthermore, we cal culated two other quantitative measures:
coverage and MMD-CD (for further details see [30]). All three measures showed that the PC-V AE
was able to generate more truck-like and hence more novel shapes. Examples of generated shapes
that were classiEed as belonging to & i.e., pickup trucks are shown in Figure 22 (B, C). Note
that the trucks generated by the PC-V AE show a slightly higher quality.

i B

A

Models

Generative diversity

AE+GMM

0.3x0.13

PC-VAE Encoder

31+22

D

Figure 22 ~ (A): Randomly sampled geometries from the test set consisting of pickup truck shapes only. (B): Shapes generated by
the AE+ GMM baseline model that were classiEed as belonging to the test set. (C): Shapes generated by the PC-VAE classiEed as
belonging to thetest set. (D): Comparing generative diversity, coverage and minimummatching distance (MMD-CD) for a subclass
of car shapes on test split (best performance for each measure shown in bold.)

W e want to emphasize that this experiment poses a significant challenge for the generative model,
since we are testing for the generation of a shape that is signiEcantly different from the training
set, f&umms This difEculty is also reZected in the small number of generated shapes that are
classiEed as truck-like (3% of 1800 generated samples, Figure 22 (D)). Nevertheless, both models
surprisingly showed the ability to generate such novel shapes, not seen in the training set, where
the PC-V AE generated shapes of higher quality.

E nforcing generation of novel shapes - To use a generative model in the engineering design
process, the model has to be able to generate realistic and novel shapes. In our research, we
therefore explored methods to enforce the generation of such realistic and novel shapes. After
training the classiEer (as mentioned in Section 3.2.3) we performed an optimization on the input
to the classiEer that was aimed at generating novel samples that are classiEed as belonging to {Egge
i.e., are considered novel or diverse. Reconstructing the latent representations returned by the
optimization process leads then to the generation of novel shapes in a targeted fashion. However,
for the optimization, we trained an additional Gaussian process model (GP) on the latent space
representation and the corresponding output probabilities of the ML P classiEer for each shape. We
trained an additional model to make use of gradient-based methods that are typically faster. Hence,
we used a differentiable model to map from the latent representation to the classiE cation results.

22

Pi
°
® Training sample [e
-

e Test sample

P; - probability of a sample
belonging to test class

generated sample x; train

-~
Wt S GP -
= P test optimize g
Generated samples f(pi)
set G
Figure 23 - Schematic overview of using gradient based optimization for novel shapes generations

max f(p;)

We trained the GP on top of the classiEcation results to apply the Broyden-Fletcher-Goldfarb-
Shanno (BFGS) algorithm to generate shapes that maximize the GP output, i.e., the probability of
classifying a latent sample as belonging to {&gws BFGS is an iterative method for solving
unconstrained non-linear optimization problems efEciently. Figure 23 shows a schematic overview
of our proposed optimization approach. In sum, we here propose an approach that is a combination
of the exploratory ability of the PC-VAE, and a classiEer and optimization applied to the learned
latent space. While we make use of the explorative and generative capabilities of the PC-V AE, we
utilize an additional model and optimization to identify and guide the generation of shapes towards
more novel designs. Our implementation of the point cloud variational autoencoder and how to
useitis detailed in A ppendix B.

4. Surrogate assisted optimization and evaluation

4.1. Improving vehicle design classification

As stated in the introduction, simulations of vehicle bodies, like computational fluid dynamics
(CFD) for aerodynamic performance, are typically very time-consuming and costly. T herefore, it
is important in any multi-criteria optimization to reduce the number of function evaluations.
Machine learning methods allow based on given data sets to identify solution proposals, which are
likely to have a low performance and may not be considered for costly simulations. However, itis
often the case that the data is imbalanced, which means that the ratio between the sample number
belonging to different classes is very large. The classification problem under class imbalance has
caught growing attention from both the academic and industrial field. Recent advances in data
storage and management as well as in data science enables practitioners from industry and
engineering to collect a large amount of data with the purpose of extracting knowledge and acquire
hidden insights. An example may be illustrated from the field of computational design
optimization, where product parameters are modified to generate digital prototypes, which
performances are evaluated by numerical simulations or based on equations expressing human

23

heuristics and preferences. Since the ratio between valid and invalid designs is likely to favour
valid designs, we will typically have an imbalanced data set. Under this circumstance, a database
would contain alarge number of designs which arevalid (even if some may be of low performance)
and a smaller number of designs which violate pre-defined product requirements. In our study, we
set up several experiments on our real-world inspired vehicle dataset to study whether performing
oversampling techniques can improve vehicle design classification. Detailed information on the
dataset is available in [31] and in the ECOLE deliverable report D1.1, Section 2.

We briefly review six powerful oversampling approaches, including both ‘classical" ones
(SMOTE, ADASYN, MWMOTE) and new ones (RACOG, wRACOG, RWO-Sampling) [32],
[33], [34], [35], [36]. The six reviewed oversampling techniques can be divided into two groups
according to whether they consider the overall minority class distribution. Among the six
approaches, RACOG, wWRACOG, and RWO-Sampling consider the overall minority class
distribution while the other three do not. D ue to the limited space, we only introduce the working
procedure of the SMOTE, ADASY N, ROCOG and WRACOG here, the working procedure of the
other two oversampling techniques are described in [31].

SMOTE and ADASY N - The synthetic minority oversampling technique (SMOTE) is the most
famous resampling technique [32]. SMOTE produces synthetic minority samples based on the
randomly chosen minority samples and their K-nearest neighbors. The new synthetic sample can
be generated by using the randomized interpolation scheme above for minority samples. The main
improvement in the adaptive synthetic (ADASY N) sampling technique is that the samples which
are harder to learn are given higher importance and will be oversampled more oftenin ADASY N
[33].

RACOG and wRACOG - The oversampling approaches can effectively increase the number of
minority class samples and achieve a balanced training dataset for classifiers. However, the
oversampling approaches introduced above heavily reply on local information of the minority
class samples and do not take the overall distribution of the minority class into account. Hence,
the global information of the minority samples cannot be guaranteed. In order to tackle this
problem, Das et al. [35] proposed RACOG (RA pidy COnverging Gibbs) and wRA COG (Wrapper-
based RA pidy COnverging Gibbs).

In these two algorithms, the n-dimensional probability distribution of the minority class is
optimally approximated by Chow-Liu's dependence tree algorithm and the synthetic samples are
generated from the approximated distribution using Gibbs sampling. Instead of running an
“exhausting _ long Markov chain, the two algorithms produce multiple relatively short Markov
chains, each starting with a different minority class sample. RACOG selects the new minority
samples from the Gibbs sampler using a predefined lag and this selection procedure does not take
the usefulness of the generated samples into account. On the other hand, WRA COG considers the
usefulness of the generated samples and selects those samples which have the highest probability
of being misclassified by the existing learning model [35], [37].

24

The original idea of the geometric data for engineering applications has been provided in D1.1
Section 2. Hence, we only emphasize the synthetic dataset generation procedure here. For the
experiments we adopted the computational fluid dynamics (CFD) simulation of a configuration of
the TUM DrivAer model [5]. The simulation model is deformed using the FFD algorithm with a
lattice with 7 planes in x- and z-directions, and 10 in y-direction (Figure 24). T he planes closer to
the boundaries of the control volume are not displaced in order to enable a smooth transition from
the region affected by the deformations to the original domain. A ssuming symmetry of the shape
with respect to the vertical plane (xz) and assuming deformations caused by displacement of entire
control planes only in the direction of their normal vectors, we define a design space with nine
parameters. To generate the data set, the displacements x; were sampled from a random uniform
distribution and constrained to the volume of the lattice, allowing the overlap of planes.

TUM DrivAer
model

— —
X1 X3

Figure 24 - Free form deformation lattice used to generate the data set for the experiments.

The initial mesh was generated using the algorithms blockMesh and snappyHexMesh of
OpenFOAM. We automatically generated 300 meshes based on the FFD algorithm implemented
in Python and evaluated them using the OpenFOAM checkMesh routine. In the process, six
meshes were discarded due to errors in the meshing process. T he metrics used to define the quality
of the meshes were the number of warnings raised by the checkMesh algorithm, the maximum
skewness and maximum aspect ratio. We manually labelled the feasible meshes according to the
rules shown in Table 3. The imbalance ratios after manual labelling are also given in Table 3.
Please note that the input attributes are exactly the same for all three sets of datasets, only the
“class_ labels are different.

25

Table 3: Feasible meshes labelling rule.

Dataset | #Afttribute | #Sample | #Warnings | Max skewness | Max aspectratio | IR
Setl 9 294 <4 <6 <10 6.35
Set2 9 294 <4 <6.2 <10.5 2.54
Set3 9 294 <2 <5.8 <10.3 12.36

T he experimental results on the digital vehicle dataset are given in Table 4. We find that applying
the oversampling techniques can improve the performance by around 10% for our digital vehicle
datasets.

Table 4: Experimental Results (AUC) on Digital Vehicle Dataset (with Decision Tree).

Dataset Baseline SMOTE | ADASYN | MWMOTE | RACOG | wRACOG RWO
Set1 0.7786 0.8412 0.8315 0.8354 0.8543 0.8406 0.8502
Set2 0.6952 0.7575 0.7560 0.7651 0.7614 0.7421 0.7452
Set3 0.6708 0.7780 0.7792 0.7660 0.7823 0.7534 0.7743

In this work, we reviewed six powerful oversampling techniques, including “classical _ ones
(SMOTE, ADASY N and MWMOTE) and new ones (RACOG, wWRACOG and RWO-Sampling),
in which the new ones consider the minority class distribution while the “classical _ ones do not.
T he six reviewed oversampling approaches were tested on 19 benchmark imbalanced datasets (not
described in this report, see [31]) and an imbalanced real-world inspired vehicle dataset to
investigate their efficiency.

In our experiment, in most cases, oversampling approaches which consider the minority class
distribution (RACOG, wRACOG and RWO-Sampling) perform better. For both the benchmark
data sets and our real-world inspired data set, RACOG performs best and MWMOTE second best.
The application of the imbalanced learning techniques, i.e., oversampling approaches, to the
vehicle design classification problem has shown to be a success with an improvement of
classification performance by around 10%. The scripts and workflow for vehicle design
classification are explained in more detail in A ppendix C.

5. Summary and Outlook

T his report introduces some essential components for multi-criteria design optimization, namely
unsupervised learning methods of features representing 3D designs and a classification technique
to minimize computational costs of design simulations. We provided details on our developed
point cloud (variational) autoencoder architectures and our research results based on both
implementations. We reported on validation results and introduced potential applications in multi-
criteria design optimization. Along with the software details given in the following A ppendices,
other researchers are enabled to utilize our code to compare their own methods with our results or
to extend our frameworks for solving additional research questions. We have also shown how
classification of imbalanced data supports the optimization and reduces (computational) costs to
fulfill constraints. Future work will cover the application of this method to the features, i.e., latent
parameters of car models, which are extracted by our autoencoders in an unsupervised fashion.

26

In the following A ppendix, the details on how to use our software are provided. A ccording to the
ECOLE data management plan document (D5.3), the software for our (variational) autoencoder is
classified as restricted, i.e., the software can be accessed via the Bear Data sharing repository of
the University of Birmingham (https://beardatashare.bham.ac.uk/login) after registration has been
requested and completed, or by contact through the form provided on the ECOLE webpage:
https://ecole-itn.eu/contact/.

T he software for the classification of imbalanced data is available on Zenodo. The link is givenin
Appendix C.

27

Bibliography

[1] S. Menzel and B. Sendhoff, "Representing the change - Free form deformation for

evolutionary design optimization," Studies in Computational Intelligence, p. 63786, 2008.

[2] M. M. Bronstein, .]J. Bruna, Y. Lecun, A. Szlam, . P. Vandergheynst and C. V. May,
"Geometric deep learning : going beyond Euclidean data," IEEE Signal Processing
Magazine, vol. July, pp. 1-22, 2017.

[3] T.Friedrich, N. Aulig and S. Menzel, "On the potential and challenges of neural style
transfer for three-dimensional shape data," in International Conference on E ngineering
Optimization, Springer International Publishing, 2019, p. 5817592.

[4] A.X.Chang, A. Funkhouser, L.]. Guibas, P. Hanrahan, Q. Huang, Z. Li, S. Savarese, M.
Sawva, S. Song, H. Sy, J. Xiao, L. YiandF.Y u, "ShapeNet: An Information-rich 3D
Model Repository," ArXiv, vol. arXiv preprint 1512.03012v1 [cs.GR], 2015.

[S5] M. Berger, A. Tagliasacchi, L. M. Seversky, P. Alliez, J. a. Levine, A. Sharf, A.
Tagliasacchi, L. M. Seversky and]. a. Levine, Joshua a., "State of the Artin Surface
Reconstruction from Point Clouds," in Proceedings of the Eurographics 2014, 2014.

[6] A.L Heft, T. Indinger and N. A. Adams, "E xperimental and Numerical Investigation of the

DrivAer Model," in American Society of Mechanical Engineers, Fluids Engineering
Division (Publication) FEDSM, 2012.

[7]1 T.Rios, S. Menzel and B. Sendhoff, "Engineering Data and D escriptors," Experience-
based COmputation: L earning to optimis (ECOLE) - Deliverable D1.1, 2020.

[8] Y.Guo, H.Wang, Q. Hu, H. Liuand M. Bennamoun, "Deep learning for 3D Point Clouds:

A Survey," arXiv preprint, vol. arXiv:1912.12033[cs.CV], 2019.

[9] S.Saha T.Rios, S. Menzel, L. L. Minku, X. Y ao and B. Sendhoff, "Optimal Evolutionary

Optimization Hyper-parameters to Mimic Human User Behavior," in IEEE Symposium
Series on Computational Intelligence (SSCI), Xiamen, China, 2019,.

[10] T. Rios, B. Sendhoff, S. Menzel, T. Back and B. V. Stein, "On The Efficiency of a Point
Cloud A utoencoder as a Geometric R epresentation for Shape Optimization," in IEEE
Symposium Series on Computational Intelligence, SSCI, 2019.

[11] P. Achlioptas, O. Diamanti, I. Mitliagkas and L. Guibas, "L earning Representations and
Generative Models for 3D Point Clouds," Proceedings of the 35th International
Conference on Machine Learning (ICML), vol. 80, pp. 40-49, 2018.

[12] D. P. KingmaandJ. Ba, "Adam: A Method for Stohastic Optimization," in 3rd
International Conference on Learning Representations (ICLR 2015), San Diego, 2015.

[13] H. Fan, H. Suand L. Guibas, "A Point Set Generation Network for 3D Object
Reconstruction from a Single Image," 30th IEEE Conference on Computer Vision and
Pattern Recognition (CVPR 2017), V ols. 2017-] anuary, pp. 2463-2471, 2017.

[14] A. X. Chang, A. Funkhouser, L. J. Guibas, P. Hanrahan, Q. Huang, Z. Li, S. Savarese, M.
Sawva, S. Song, H. Sy, J. Xiao, L. YiandF.Y u, "ShapeNet: An Information-rich 3D
Model Repository," ArXiv, vol. arXiv preprint 1512.03012v1 [¢s.GR], 2015.

28

[15] T. Rios, P. Wollstadt, B. V. Stein, T. Back, Z. X u, B. Sendhoff and S. Menzel, "Scalability
of Learning Tasks on 3D CAE Models Using Point Cloud A utoencoders," in 2019 IEEE
Symposium Series on Computational Intelligence, SSCI 2019, X iamen, China, 2019.

[16] T. W. Sederberg and S. R. Parry, "Free-form D eformation of solid geometric models,"
Proceedings of the 13th Annual Conference ib Computer Graphics and Interactive
Techniques (SIGGRAPH '86), pp. 151-160, 1986.

[17] S. Chen, D. Tian, C. Feng, A. Vetro and]. KovaTeviP, "Fast Resampling of T hree-
Dimensional Point Clouds via Graphs," IEEE Transactions on Signal Processing, vol. 66,
no. 3, pp. 666-681, 2018.

[18] T. Rios, P. Wollstadt, B. V. Stein, T. Back, Z. X u, B. Sendhoff and S. Menzel, "Scalability
of Learning Tasks on 3D CAE Models Using Point Cloud A utoencoders," in 2019 IEEE
Symposium Series on Computational Intelligence, SSCI, X iamen,China, 2019.

[19] T. Rios, B. V. Stein, S. Menzel, T. B+ck, B. Sendhoff and P. Wollstadt, "Feature
Visualization for 3D Point Cloud A utoencoders," in International] oint Conference on
Neural Networks (I) CNN), 2020.

[20] F. Pedregosa, G. V aroquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P.
Prettenhofer, R. Weiss, V. Dubourg, J. V anderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot and 8. Duchesnay, "Scikit-learn: Machine learning in Python," J ournal of
Machine Learning Research, 2011.

[21] D. P. Kingma and M. Welling, "A uto-encoding variational bayes," in 2nd International
Conference on Learning Representations, ICLR, 2014.

[22] D.]. Rezende, S. Mohamed and D. Wierstra, "Stochastic Backpropagation and
Approximate Inference," in 31st International Conference on International Conference on
Machine Learning, 2014.

[23] D. P. Kingma and M. Welling, "An introduction to variational autoencoders," An
introduction to variational autoencoders, vol. 12, no. 4, 2019.

[24] N. Schor, O. Katzir, H. Zhang and D. Cohen-Or, "CompoNet: L earning to generate the
unseen by part synthesis and composition," in Proceedings of the IEEE International
Conference on Computer Vision, 2019.

[25] M. Zamorski, M. ZiH®a, P. K lukowski, R. Nowak, K. Kurach, W. Stokowiec and T.
Trzcivski, "Adversarial autoencoders for compact representations of 3D point clouds,"
Computer Vision and Image Understanding, p. 193, 2020.

[26] C.R. Qi, H.Su, K. Moand L. J. Guibas, "PointNet: Deep learning on point sets for 3D
classification and segmentation," in IEEE Conference on Computer Vision and Pattern
Recognition, CVPR, 2017.

[27] A. L. Maas, A.Y . Hannunand A. Y. Ng, "Rectifier nonlinearities improve neural network
acoustic models," in ICML Workshop on Deep Learning for Audio, Speech and Language
Processing, 2013.

[28] T. Akiba, S. Sano, T. Y anase, T. Ohta and M. K oyama, "Optuna: A Next-generation
Hyperparameter Optimization Framework," in Proceedings of the 25th International
Conference on Knowledge Discovery and Data Mining, 2019.

29

[29] D. Berthelot, 1. Goodfellow, C. Raffel and A. Roy, "Understanding and improving
interpolation in autoencoders via an adversarial regularizer," 7th International Conference
on Learning Representations, ICLR, pp. 1-20, 2019.

[30] S. Saha, S. Menzel, L. L. Minku, X. Y ao, B. Sendhoff and P. Wollstadt, "Quantifying The
Generative Capabilities Of V ariational A utoencoders For 3D Car Point Clouds," in IEEE
Symposium Series on Computational Intelligence, SSCI 2020, 2020.

[31]). Kong, T. Rios, W. Kowalczyk, S. Menzel and T. Bxck, "On the Performance of
Oversampling Techniques for Class Imbalance Problems," in In Pacific-Asia Conference
on Knowledge Discovery and Data Mining, 2020.

[32] N. V. Chawla, K. W. Bowyer, . L. O. Hall and W. . P. Kegelmeyer, , "SMOTE: Synthetic
minority over-sampling technique," J ournal of Artificial Intelligence Research, vol. 16, pp.
321-257, 2002.

[33] H. He, Y. Bai, E. A. Garciaand S. Li, "ADASY N: Adaptive synthetic sampling approach
for imbalanced learning," in Proceedings of the International J oint Conference on Neural
Networks, 2008.

[34] S. Barua, M. M. Islam, X. Y ao and K. Murase, "MWMOTE - Majority weighted minority
oversampling technique for imbalanced data set learning," in IEEE Transactions on
Knowledge and Data E ngineering, 2014.

[35] B. Das, N. C. Krishnanand D. J. Cook, "RACOG and wRA COG: Two probabilistic
oversampling techniques," in IEEE Transactions on Knowledge and Data E ngineering,
2015.

[36] H. Zhang and . M. Li, "RWO-Sampling: A random walk over-sampling approach to
imbalanced data classification," Information Fusion, pp. 99-116, 2014.

[37] A. L. Heft, T. Indinger and N. A. Adams, "E xperimental and numerical investigation of the
drivaer model," in American Society of Mechanical Engineers, Fluids Engineering
Division (Publication) FEDSM, 2012.

[38] P. Achlioptas, O. Diamanti, I. Mitliagkas and L. Guibas, "L earning Representations and
Generative Models for 3D Point Clouds," Proceedings of the 35th International
Conference on Machine Learning (ICML), vol. 80, pp. 40-49, 2018.

[39] Alcal®Fdez, A. Fern®dez, J. Luengo, J. Derrac, . S. Garc®, L. S®&chez and F. Herrera,
"KEEL data-mining software tool: Data set repository, integration of algorithms and

experimental analysis framework," J ournal of Multiple-Valued Logic and Soft Computing,
2011.

30

A ppendix

The software modules have been developed using Python (Appendices A and B) and R
(Appendix C) and thus need prior Python/R installations. T he scripts in the present repository are
provided under the terms of the GNU General Public License as published by the Free Software
Foundation, either version 3 of the License, or any later version.

The scripts described in the A ppendices A and B were tested with Linux OS (Ubuntu 18.04, Conda
environment) and Python 3.6.10 and require the installation of the following Python libraries:
numpy, version 1.19.1

TensorFlow, version 1.14.0

TFLearn, version 0.3.2

cudatoolkit, version 10.1.168

CuDNN, version 7.6.5

pandas, version 1.1.0

implementation of the Chamfer distance wused in [38], available at
https://github.com/optas/latent 3d_points. If the scripts are used in an environment with
Python 2.7+, CUDA 8.0+ or cuDNN 6.0+, the scripts in [38] from Achlioptas et al. must
be adjusted and compiled to the current versions in the environment.

[o S O R A e

Furthermore, the data set for training the point cloud autoencoders have to be stored in a single
directory, which comprises files in one of the following formats: .csv, .xyz, .stl or .obj. The
algorithms in the data pre-processing script were developed to load files from a directory with
mixed formats, however, it is not recommended. If the user would like to train or test the models
on the ShapeNetC ore data, for example, the data have to be pre-processed and organized in asingle
directory prior to the training, otherwise the scripts cannot load the point cloud data.

For the software in Appendix C, the R software needs to be installed along with R packages for
imbalance classification. The training data from the KEEL data set [39] needs to be preprocessed
before being loaded into the scripts, by changing the file format from .dat to .csv and the class
labels from { positive, negative} to {1, O}.

Appendix A ~ Vanilla 3D point cloud autoencoder scripts

Step 1: Training the autoencoder ~ the first step to use the autoencoder is to train the parameters
on a data set of 3D point clouds. The training algorithm is performed by using the following
command in the terminal:

python pcae_training.py --N [point_cloud_size] --LR [Ir_size]

--i [data_set_directory] --o [output_directory]

-- GPU [gpu_i d]

The script generates a directory named Network_pcae_ N{i}_LR{j} in the output directory, as
defined for the parameter ~o, with values of i and j as assigned to --N and --LR, respectively. If the
parameter is not specified, the directory is created in the path, where the user starts the training

31

algorithm. Further parameters of the architecture were hard coded in the training script and, if
necessary, need to be changed in the pcae_training.py file (Figure 25).

T he script outputs the following files:

¢ checkpoint, pcae.data-00000-0f-00001, pcae.index and pcae.meta: these files store
information about the tensorflow graph and are used to recover the trained parameters.

¢ geometries_training.csv and geometries_testing.csv: text files containing the path to the
geometries assigned to the training and testing partitions.

¢ pcae_N{}_LR{}_losses_training.csv and pcae_N{}_LR{}_losses_test.csv: text files
containing the values of the mean and standard deviation calculated for each epoch on the
training and test partitions.

¢ normvalues.csv: contains the maximum and minimum values observed in the data set, used
for normalizing the data before training

¢ plot_losses_pcae_N{}_LR{}.png: scatter plot of the losses computed on the training and

test sets.
¢ log_dictionary.py: python dictionary containing the parameters assigned for training the
autoencoder.
Script workflow
Main script Data pre-processing script I—b Data set directory |

Assign configurations Access data set directory
Load data set ———— |Sample point clouds | p }
Normalize data «<——— [Log shape ID "
Training/test data split <pcO_id>.xyz
Create network tensors — PC-AE Architecture script
Training loop €————— |GenleraFe‘ r?etworjk graph L <peNid>xyz
Clear GPU and exit | Assign initial weight values

|—> Output directory

Dictionary file with configurations (.py) Plot of losses during training (.png)
Log of point cloud files used for training (.csv) META file for recovering the graph
Log of point cloud files used for testing (.csv)

Log of losses during training and testing {.csv)

Figure 25 - Configurations and information workflow of the autoencoder training algorithm

Step 2: Testing the trained architecture ~ The trained architecture can be tested using two
scripts: one for computing the reconstruction loss on a set of point clouds and the other for
generating point clouds from samples in the |atent space. For computing the reconstruction losses,
the following command should be used in the terminal:

python evaluate_loss.py --N [point_cloud_size] --LR [Ir_size] --GPU [gpu_id]

[list_with_pointclouds_path] --VAE False

where the parameter --i specifies the path to a text file, which contains the paths of the point clouds
that should be used as input. For this script, the point cloud data have to be stored as .xyz files,
otherwise they cannot be loaded for testing the architecture. An example of potential list files that
could be used are the geometries_training.csv and geometries_testing.csv, generated by the
autoencoder training algorithm. T he output of the script is a file named reconstruction_losses.dat

32

in the directory pcae_test, generated inside the training folder, containing the path to the tested
geometries, corresponding latent representations and the computed reconstruction losses.

Since both architectures and algorithms are very similar, a single script was developed for testing
both architectures. The parameter --VAE, is a flag to indicate whether the script is applied to a
Vanilla (False) or Variational (True) autoencoder, such that the algorithm can assign different
paths and architectures. If not assigned, it is assumed that the algorithm is applied to a vanilla
autoencoder.

For generating point clouds from samples in the latent space, the following command should be
input to the terminal:

python pointcl oud_generator.py --N [point_cloud_size] --LR [Ir_size]
--GPU [gpu_id] --i [list_with_latentvariables_path] --VAE False

T hefile assigned to the parameter --i must comprise the values of the latent variables to reconstruct
the point clouds, formatted as comma-separated values: each line describes the latent
representation of a shape with latent variables separated by commas. The remaining parameters
enable the same functionalities as described for the previous scripts. T he outputs of the algorithm
are point cloud data (.xyz) and plots (.html), stored in a folder point_cloud_generation inside the
training directory of the autoencoder.

Step 3: Extracting the network parameters ~ in order to use the trained weights and biases in
further application without requiring the tensorflow graph files, one can extract and save the
parameters as text files, running the following command in the terminal:

python ae_parameters_extraction.py --N [point_cloud_size]
"-LR [l atent_representation_size] --GPU [gpu_id] --VAE [True

T he output of the script are .*dat files with the corresponding name of the layer, as assigned in the
file architecture_autoencoders.py, comprising the values of the trained parameters.

Step 4: Example of application ~ in order to illustrate a potential application of the autoencoder,
we provide a script that performs interpolation between shapes in the training and test sets, using
the representations in the latent space. The algorithm runs by calling the following command in
the terminal window:

python autoencoder_Ir_interpolation.py --N [pc_size]
--LR [latent_space_di nension] --VAE [if variational,
-- GPU [gpu_to_be_assigned] --VAE [True/False

True]

where the parameters assigned in the command line have the same functionality as in the previous
scripts. The algorithm assigns five shapes from the training set and five from the test set to the
interpolation batch, and generates five intermediate representations between each shape, which are
reconstructed using the decoder and plotted as .png and .html files (Figure 26). After plotting the
point clouds, the algorithm generates a .gif animation of the interpolation, stored in the directory

33

point_cloud_itnerpolation, created inside the autoencoder training folder, together with the other
files.

Configuration in the script:
Data set directory: <path> Output directory: <path> Number of steps between shapes: (N)

Script workflow

Main script : Data pre-processing script | |—b Data set directory
Assign configurations Access data set directory —
Load data set — |Sample point clouds
Normalize data _;: ||_0g shape ID]
Load network tensors «——— | | === == <PL0. oy
Autoencoder training
Calculate latent variables directory =
Calculate interpolations —— Input_limits.dat <pcN_id>.xyz |
. >ave plots and animations 4 PC-AE_graph.META
—> Point cloud visualization
| |Single point cloud plot
|Sequence animation

Y
Qutput directory

interpolated point cloud plots (.html} animated plot of the interpolation (.qif)

Figure 26 - Data workflow for a shape interpolation task performed in the latent space.

According to the ECOLE data management plan document (D5.3) the software in A ppendix A is
classified as restricted, i.e., the software can be accessed via the Bear Data sharing repository
of the University of Birmingham (https://beardatashare.bham.ac.uk/login) after registration has
been requested and completed, or by contact through the form provided on the ECOLE webpage:
https://ecole-itn.eu/contact/.

The filename is: D1_PointCloudA utoencoder-200921-RESTRICTED.tgz

Appendix B ~ 3D point cloud variational autoencoder scripts

The implementation of 3D point cloud variational autoencoder (PC-VAE) vpcae_training.py - is
tuned for the car class of ShapeNet dataset, i.e. the optimal value of alpha and beta for training
PC-V AE with car class shapes. T he script for training the autoencoder has a rather fixed structure,
where one assigns the architecture and training hyperparameters and performs the optimization of
the network weights. After training the model, the script also saves the architecture with trained
weights, which can be used in downstream tasks, the history of losses during training and the log
of the shapes sampled from the data set. T he script can run using the inline command. A schematic
overview of the data flow for training the point cloud autoencoder is shown in Figure 27. T he steps
for training and applying the variational autoencoder are as follows:

Step 1: Training the autoencoder ~ the first step to use the autoencoder is to train the parameters

on a data set of 3D point clouds. The training algorithm is performed by using the following
command in the terminal:

34

python vpcae_training.py ~ i [path to dataset] --o [path to output directory -
-N [pc_size] --

LR [l atent_space_di nension] --GPU [GPU id]

The script generates a directory named Network_v_pcae_N{i}_LR{j} in the output directory, as
defined by the parameter ~o, with values of i and j as assigned to --N and --LR, respectively. If the
parameter is not specified, the directory is created in the path where the user starts the training
algorithm. Further parameters of the architecture were hard coded in the training script and, if
necessary, need to be changed in the vpcae_training.py file (Figure 27).

T he script outputs the following files:

¢

4

4

¢

checkpoint, vpcae.data-00000-0f-00001, vpcae.index and vpcae.meta: these files store
information about the tensorflow graph and are used to recover the trained parameters.
geometries_training.csv and geometries_testing.csv: text files containing the path to the
geometries assigned to the training and testing partitions.
v_pcae_N{}_LR{}_losses_training.csv and v_pcae_N{} _LR{}_losses_test.csv: text files
containing the values of the mean and standard deviation calculated for each epoch on the
training and test partitions.

v_pcae_N{}_LR{}_recon_losses_training.csv and
v_pcae_N{}_LR{}_recon_losses_test.csv: text files containing the values of the mean
and standard deviation calculated for each epoch on the training and test partitions for the
reconstruction loss.

v_pcae_N{}_LR{}_KL_losses_training.csv andv_pcae N{}_LR{}_KL_losses_test.csv:
text files containing the values of the mean and standard deviation calculated for each
epoch on the training and test partitions for the KL divergence loss.

normvalues.csv: contains the maximum and minimum values observed in the data set, used
for normalizing the data before training

plot_losses_v_pcae_N{} _LR{}.png: scatter plot of the losses computed on the training and
test sets.

log_dictionary.py: Python dictionary containing the parameters assigned for training the
autoencoder.

35

Configuration in the script:

Data set directory: <path>
Output directory: <path> Data set
training, validation split : x in(0,1)

Sampling method <function>
Encoder layers: [EL1,[EL3]
Decoder layers: [DL1. ... DL3]

Training.pkl, test.pkl, validation.pkl : pickle file containing the training,test and validation shapes.

Learning rate: 5E-03
Loss function: CD
Number of Epochs: 700

Alpha - 250, beta - 0.001

Script workflow F : =
Data pre- processing script

Data set directory

...........................

Main script Access data set directory

Assign configurations Sample point clouds|e——
Load data set

| _ | Log shape ID ’
Normalize data 1 S

" Data pre- processing script

|:=1pc0_id>.xyz

e —Ll <pcN_1d>xyz
Training/validation/test data split | | S 7

Create network tensors I_ H
Training loop (Step 1)* t
Clean GPU and exit

Generate network graph
Assign initial weight values

-
',
-

Output directory

Dictionary file with configurations(_py) Plot of losses during trainins(png)
Log of point cloud files used for training (.dat) META file for recovering the graph
Log of point cloud files used for testing (_dat)

Log of losses for training and testing (_dat)

Figure 27 - Data workflow of variational autoencoder training in Step 1.

Step 2: Testing the trained architecture ~ The trained architecture can be tested using two
scripts: one for computing the reconstruction loss on a set of point clouds and the other for
generating point clouds from samples in the |atent space. For computing the reconstruction losses,
the following command should be used in the terminal:

python evaluate_loss.py --N [point_cloud_size] --LR [Ir_size] --GPU [gpu_id]

[list_with_pointclouds_path] --VAE True

where the parameter --i specifies the path to a text file, which contains the paths of the point clouds
that should be used as input. For this script, the point cloud data have to be stored as .xyz files,
otherwise they cannot be loaded for testing the architecture. An example of potential list files that
could be used are the geometries_training.csv and geometries_testing.csv, generated by the
autoencoder training algorithm. T he output of the script is a file named reconstruction_losses.dat
in the directory pcae_test, generated inside the training folder, containing the path to the tested
geometries, corresponding latent representations and the computed reconstruction losses. The
workflow of the script is described in Figure 28.

36

h! e n

{ - i i :
_________________________ ! Data pre- processing script i Data set directory
FalTenan 1 (Step0) :
I’ Main seript \ i Access data set directory i
- - i 2 1
! Ass1gn_ configurations | i a Sample point clouds i T
| Load list of shapes to reconstruct 21!y | ', |Log shape ID /
i Normalize data < E e R s e b LR S G S - s .
1 r 4 Y
| Load network tensors +——— | Training directory sk
| Create network tensors i Input_limits dat b -
i Reconstruct the shapes ! (v)pcae.meta
! Calculate reconstruction loss i
“_ Save the loss values _,.”
L A
Qutput directory
reconstruction_losses dat

Figure 28 - Data workflow for evaluating the reconstruction loss using the trained model

For generating point clouds from samples in the latent space, the following command should be
used in the terminal:

python pointcl oud_generator.py --N [point_cloud_size] --LR [Ir_size]
-- GPU [gpu_id] [list_with_latentvariables_path] --VAE True

T hefile assigned to the parameter --i must comprise the values of the latent variables to reconstruct
the point clouds, formatted as comma-separated values: each line describes the latent
representation of a shape with latent variables separated by commas. The remaining parameters
enable the same functionalities as described for the previous scripts. T he outputs of the algorithm
are point cloud data (.xyz) and plots (.html), stored in a folder point_cloud_generation inside the
training directory of the autoencoder.

Step 3: Extracting the network parameters ~ in order to use the trained weights and biases in
further applications without requiring the tensorflow graph files, one can extract and save the
parameters as text files, running the following command in the terminal:

python ae_parameters_extraction.py --N [point_cloud_size]
“-LR [l atent _representation_size] --GPU [gpu_id] --VAE True

T he output of the script are .*dat files with the corresponding name of the layer, as assigned in the
file architecture_autoencoders.py, comprising the values of the trained parameters.

Step 4: Example of application ~ in order to illustrate a potential application of the variational
autoencoder, we provide a script that performs interpolation between shapes in the training and
test sets, using the representations in the latent space. T he algorithm runs by calling the following
command in the terminal window:

37

python autoencoder_Ir_interpolation.py --N [pc_sizel]
--LR [l atent _space_di mension] "V --GPU [gpu_to_be_assigned]

--VAE True

Where the parameters assigned in the command line have the same functionality as in the previous
scripts. The algorithm assigns five shapes from the training set and five from the test set to the
interpolation batch, and generates five intermediate representations between each shape, which are
reconstructed using the decoder and plotted as .png and .html files (Figure 26). After plotting the
point clouds, the algorithm generates a .gif animation of the interpolation, stored in the directory
point_cloud_interpolation, created inside the autoencoder training folder, together with the other
files.

According to the ECOLE data management plan document (D5.3) the software in Appendix A is
classified as restricted, i.e., the software can be accessed via the Bear Data sharing
repository of the University of Birmingham (https://beardatashare.bham.ac.uk/login) after
registration has been requested and completed, or by contact through the form provided on the
ECOLE webpage: https://ecole-itn.eu/contact/.

The filename is: D2_PointCloudV ariational A utoencoder-200921-RESTRICTED.tgz

Appendix C ~ Improving imbalance classification

We aim to improve vehicle design classification using this software component. As we
emphasized, in the field of computational design optimization, a minority number of design
parameter variations will resultin invalid geometries that violate some given constraints. Since the
ratio between valid and invalid designs is likely to favor valid designs, we will typically have an
imbalanced data set. Hence, performing proper imbalanced classification algorithms on the design
parameters could save computation time and improve accuracy. The code is available at
https://zenodo.org/record/3855094#.X zpRvuj7QuVvV

and the steps for selecting a proper imbalance classification algorithm on the design parameters
using this script are as follows:

Step 1: processing the script - The path to the data set and output directories were hardcoded in
the scripts and need to be adapted before running the scripts. T he script can be processed using the
run command of the R software. The script calculates the performance matrix for SMOTE,
ADASY N, MWMOTE, RACOG, wRACOG, RWO oversampling techniques and save it in the
output directory.

Step 2: Evaluation: The final performance matrices are saved in the output directory in .csv
format.

Configuration in the script:

Data set directory: <path> Random seed: <set.seed>
Data set training split: stratified folds Oversampling methods: <function>
Classifiers: C5.0 or SVM After-sampled IR (imbalance ratio): x in (0.8, 1]

Output directory: <path>

38

Script workflow

’——————————~

Vv e ————
Main Script ‘,) ,' Data oversampling scrlp M ’-u[Data set directory \
Assign configurations : I Access data set directory |
L oad data set I : Training/test data split with | imb bench 1
Normalized data H 1| stratified folds I _'g‘ g ench._
Calculate data complexity 1 1 |Assign oversampling method
Assign classifiers i 1| andafter-sampled IR H — Lm% tTen<1:h_19
Training loop 1 T — -7 . Veh!cle_z
CIear GPU and exit J — VZh:§|:_3
Output directory ' ,/'D ata Pre-processing: K
AUC performance matrix (.csv) i 1. The detailed information for the benchmark -
F1 performance matrix (.csv) I datasets can be found in paper [31], and the I
Gmean performance matrix (.csv) | | datasets can be downloaded from KEEL datasets
Data complexity value for each : repository [39]. I
\tra| ning set (.csv)) 1 2. Beforethe experiments, we changed the i
: benchmark datasets format from .dat to .csv. :
I Meanwhile, we changed the class label from 1
|\ {positive, negative} to {1, O}. ,'
\\ ___________________________ _/,

Figure 29 - Data workflow of class imbalance classification

39

