
 

1 

 

 

 

 

 

 

 

 

D1.1 – Engineering Data and Descriptors 
 

 

ECOLE 

Experience-based COmputation: Learning to optimisE 

766186 

 

H2020 MSCA-ITN 

27th March 2020 

 

Authors: Thiago Rios, Stefan Menzel, Bernhard Sendhoff – HRI-EU 

 

 

 

 

  

 

  

Ref. Ares(2020)1527687 - 12/03/2020



 

 

2 

 

1. Introduction …………………………………………………………………………………………………….…………………….3 

2. Geometric Data for Engineering Applications …………………………………………………………………………4 

2.1 Geometric Data Manipulation through Morphing Techniques ……………………………………………..4 

2.1.1 Classification of Car Shapes According to the Projected Frontal Area ……………………………..…5 

2.1.2 Classification of CFD Mesh Quality based on FFD Parameters …………………………………………..7 

2.2 Engineering Data for Geometric Deep Learning ………………………………………………………………….11 

3. Summary and Outlook ………………………………………………………………………………………………………….14 

References ………………………………………………………………………………………………………………………………15 

 

 

 

 

 

 



 

3 

 

1. Introduction 
 

The research in the ECOLE project aims at generating computational models for capturing the 

notion of experience, which is embedded in data collected over the course of sets of 

optimizations, and exploiting said experience in similar, yet more challenging, optimization tasks. 

This vision of experience follows the analogy of an engineer who also collects, abstracts and 

utilizes her/his professional experience built while working on different types of applications. In 

the Work Package 1 (WP1) of the ECOLE project, we focus on the research on experience-guided 

optimization in automotive product design, linking scientific questions to industrial problems and 

adding a practical perspective to the research tasks.  

 

A central aspect of the research in this domain is defining a target problem and collecting relevant 

data. Typically, dealing with real-world, automotive application data — here defined as the 

geometric and engineering performance descriptors associated with a set of different designs — 

has several obstacles. First, the data available for a specific design or component is usually sparse, 

since during the development process the design descriptors often change, because they are 

adapted to local design objectives and constraints, simulation tools and user preferences. 

Second, evaluating the performance of the design often requires considerable effort, since the 

results derive from expensive computational simulations, e.g. taking in the range of hours to 

perform aerodynamics or crash simulations. In addition to the computational cost, the 

interpretation and documentation of the results can be inconsistent, if e.g. handled by different 

people. Furthermore, the access to the data might be hindered by the use of file formats that are 

only compatible with proprietary software tools and by confidentiality agreements.  

 

However, for research purposes, we require reliable and consistent processes to generate large 

amounts of design data, ideally, online and in real-time. Hence, in order to generate engineering 

data sets to support ECOLE research activities, we have proposed three general guidelines for 

designing the algorithms: First, the geometric representations of choice should allow us to modify 

the designs with a reasonable number of parameters, and to cope with adaptations of the design 

domain, by adding, subtracting or relocating parameters. Second, the data should be processed 

in a straightforward and automated fashion, easing the manipulation and transfer of high volume 

of data. Third, the design modifications and the calculation of the performance metrics should 

be consistent and the results trackable, in order to ensure reproducibility. This step comprises 

design pre-processing, simulation and post-processing, e.g. design modification with automated 

re-meshing, followed by the solution of Navier-Stokes equations to calculate the flow field 

properties, and automated calculation of the drag force as performance indicator for a car design. 

 

In this report, we present the methods and algorithms developed for the ECOLE project, in order 

to generate industrial-grade data sets for research purposes. The remainder of the report is 

organized as follows: In Section 2.1, we introduce the morphing technique used to generate 

synthetic data sets of geometries and corresponding aerodynamic performance. In Section 2.2, 

we describe the benchmark shape data sets, which provide shapes with higher diversity of 

geometric features and quality, requiring additional effort in the preprocessing steps. In 
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Section 2.3, we present a brief overview of work in progress on the automation of geometric data 

processing to fit benchmark data sets to the requirements of engineering simulations for 

evaluating their performance. Finally, in Section 3, we conclude the report with a summary and 

outlook. 

2. Geometric Data for Engineering Applications 

Following the advances of graphic cards and data storage technology, 3D digital geometric data 

has become ubiquitous. In order to make sense of the data, engineers use different types of 

representations for processing geometric data: (a) polygonal meshes, e.g. stereolithography (STL) 

files, which represent surfaces as undirected graphs, (b) voxels, which encode geometries as their 

occupancy in a uniform grid, or (c) point clouds, which comprise the coordinates of a set of points 

sampled from an object [1]. Consequently, the availability of benchmark data sets of shapes has 

also increased in the past few years, which allowed for the development of more sophisticated 

tools for geometric processing and powerful deep learning architectures. 

 

However, while these representations encode geometric properties allowing for shape 

comparisons and analysis, they lack reasonable means to modify the designs with a small number 

of parameters (user handles). Commercial software tools overcome this issue by using other 

parameterizations to enable shape manipulation, e.g. Bezier-, B-Splines, and shape morphing 

techniques, which rely on polynomials to map the geometry to control points, which can be used 

to generate continuous and intuitive modifications in the parameterized shapes. Therefore, we 

adopted the morphing approach as a start point for generating data sets of 3D shapes for 

research within the ECOLE project based on our experience of a series of past design optimization 

tasks [2-4] and patents in this field [5-7].  

 

2.1. Geometric Data Manipulation through Morphing Techniques 

In ECOLE, we apply shape deformation, namely standard free form deformation (FFD) [8], as 

state-of-the-art method to the generation of shape variations. In this method, the user embeds 

a geometry in a uniform lattice formed by control points, which are mapped to the geometry 

through trivariate Bernstein polynomials. Hence, by manipulating the position of the control 

points, the shape is deformed accordingly and the user can intuitively modify the initial shape, 

which has its continuity ensured by the order of the polynomials (Figure 1).  

 
Figure 1 - Example of FFD manipulation applied to the TUM DrivAer model, taken from [9] 
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The method requires low computational effort and, therefore, it is scalable to high-dimensional 

computer aided engineering (CAE) models. In addition, it enables the use of different sets of 

control points to deform the shape and, therefore, allows for an increase in the diversity of 

modified geometric features and variety of shapes in the data set. In order to generate the data 

sets, we have implemented a flexible framework, which can be adapted according to the required 

information. Furthermore, the algorithms were scripted in Python, and supplemented by 

external files with third-party software specific language whenever required. For reproducing the 

deformed shapes described in this report, equations (1) and (2) as specified on page 153 of [8] 

need to be implemented. For each data set, we will provide the set-up coordinates and the 

deformation parameters used in our experiments. 

 

In the following sections, a description of our research is presented where data sets based on 

shape deformations of the TUM DrivAer models [10-12] have been employed. In all cases, the 

input models are STL files with polygonal meshes that represent the TUM DrivAer model. The 

TUM DrivAer model is a generic car model developed at and provided by the Technical University 

of Munich allowing researchers and engineers to study aerodynamic effects on a car model. The 

model includes a set of different car variants and can be accessed via web. 

(https://www.mw.tum.de/aer/forschungsgruppen/automobilaerodynamik/drivaer/). In the 

following, we describe the generated data sets along with their purpose within the ECOLE project. 

 

2.1.1. Classification of Car Shapes According to the Projected Frontal Area 

The purpose of this data set is to enable studies on resampling techniques for class imbalance 

research on industrial-grade data. The data set designed for the experiments comprises the 

parameters for 200 deformations of the TUM DrivAer model and their respective estimate of the 

projected frontal area, as a simplified indicator for aerodynamic performance. In the following, 

the set-up, namely the FFD and post-processing steps to reproduce the data is described. 

 

The FFD control lattice used to deform the shapes contains three planes in the x- and z-direction 

and seven in the y-direction, positioned at the coordinates shown in Table 1. In order to select 

the deformation parameters, we conditioned the deformed shapes to be symmetric with respect 

to the mid xz-plane, and ensured that control points do not overlap each other, in order to avoid 

singularities such as self-intersections of the design surfaces. To enforce the symmetry of the 

models, the position of the control points was mirrored with respect to the mid xz-plane of the 

lattice. Hence, considering the proposed constraints, we defined the axial displacement of the 

control planes as deformation parameters, which results in nine design variables, as shown in 

Figure 2.  

 
Table 1 – Position of the control planes along each axis. 

Direction Vehicle Boundaries [m] Position of the planes [m] 

x [-0.88, 3.80] [-0.88, 2.34, 3.80] 

y [-1.02, 1.02] [-1.02, -1.36, -0.68, 0, 0.68, 1.36, 2.04] 

z [-0.31, 1.09] [-0.31, 1.76, 3.20] 
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Figure 2 – Control parameters and lattice used to deform the DrivAer model 

One challenge during an automated geometry generation process is to ensure that all deformed 

designs are valid, i.e. free of self-intersections of the design surface. Invalid designs would fail 

during a potential CFD simulation. Therefore, we set constraints on the maximum movement of 

each control point to avoid a change in the order of control points which is a simple heuristic for 

valid designs. We used a uniform distribution to randomly sample from the design space. To 

ensure reproducibility we started the random number generator with a defined seed value.  

 

To assign a performance value to each car design, we estimated the projected frontal area by the 

sum of the projection of the area of the STL elements to the frontal plane of the car, according 

to the element normal direction. Although it is a low fidelity approximation of the aerodynamic 

performance, calculating the projected area requires much less computational effort than CFD 

simulations, which enabled us to generate enough volume of data within a reasonable amount 

of time. 

 

Finally, the workflow of the data for the complete process is shown in Figure 3. As previously 

mentioned, the deformed models derive from the same initial shape, which is embedded in the 

lattice. Based on the number of planes and their positions along the axes, the deformation 

parameters are sampled and stored in a temporary text file. Then, until the number of required 

deformations is generated, the algorithm performs a loop, where the parameters are assigned 

to the lattice, the shape is deformed, the projected area is calculated and the data-set of 

parameters and projected area are stored in a dat file, structured as shown in Table 2.  

 

 
 

Figure 3 – Workflow of the data generation process 
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Table 2 - Structure of the text file containing the data set 

File name: D1_TUMDrivAerFrontalArea-FFDParametersAndMetrics-190301-RESTRICTED.dat 

ID x1 x2 x3 x4 x5 x6 x7 x8 x9 Area 

DEFORM_1 

-

0.927 1.823 4.154 

-

1.133 

-

0.818 

-

0.365 

-

0.515 0.494 1.550 4.702 

… … … … … … … … … … … 

DEFORM_200 

-

1.354 1.459 4.467 

-

0.727 

-

0.740 

-

0.451 

-

0.501 0.325 1.132 5.905 

 

According to the ECOLE data management plan document (D5.3), the data is classified as 

restricted, i.e., the data set can be accessed via the Bear Data sharing repository of the University 

of Birmingham (https://beardatashare.bham.ac.uk/login) after registration has been requested 

and completed, or by contact through the form provided on the ECOLE webpage:  

https://ecole-itn.eu/contact/. Although we have gone through some effort to document the 

data, its use is not entirely self-explanatory. The complexity of the engineering process is simply 

too high and the effort would be unreasonable to make the data set completely self-contained. 

Therefore, the required registration also allows us to provide some support and additional 

explanation to interested researchers. 

 

2.1.2. Classification of CFD Mesh Quality based on FFD Parameters 

The purpose of this data set to allow the analysis of the effects of resampling techniques on class 

imbalance classification problems for distinguishing between valid (correctly converged) and 

erroneous CFD results. As a first criteria, we observe the quality of the deformed CFD mesh, which 

indicates the expected quality of the CFD calculations. A low quality CFD mesh with many 

stretched grid cells or even intersecting grid cells does not converge to reasonable aerodynamic 

results. Hence, we selected the prediction of mesh quality as an industrial application, where a 

classification algorithm is used to distinguish sets of FFD parameters into two groups: the first 

group would result in feasible CFD mesh deformations which guarantee valid CFD simulations 

while the second group would result in ill-defined CFD meshes which would result in erroneous 

CFD simulation results. Also differently from the previous case, this study requires the FFD 

algorithm to operate directly on the CFD mesh (Figure 4), as it is usually done in the actual 

optimization process [2-4]. Hence, the previous process (Section 2.1.1) to generate the data was 

modified in such a way that the scripts would interact with a third-party software, namely the 

CFD simulation tool OpenFOAM [13]. Furthermore, restrictions imposed by the CFD simulations 

had to be taken into account. Finally, the software had to run on a high-performance computer 

cluster. 
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Figure 4 – Representation of the STL mesh, used to describe the car shape, and the CFD mesh, which is used for 

calculating the air flow around the car. 

For the CFD simulations, it is assumed that a symmetric car shape is positioned in a large fluid 

domain, with the wheels tangent to the ground and rotating with speed compatible to the linear 

velocity of the vehicle, which rides in a straight line and aligned with the flow. In order to keep 

the assumptions valid for the simulation of any deformed car shape, FFD should preserve the 

position of the car as much as possible, and thus, we defined a different lattice to the one 

described in Section 2.1.1 to perform the deformations. 

 

The lattice used in the experiments had an offset distance from the extremes of the initial shape, 

except on the bottom, where it was kept tangent to the tires (Table 3). In order to preserve the 

position of the car, we fixed two control planes adjacent to each boundary of the lattice. 

Additionally, this constraint also attenuates the distortion of elements close to the limits of the 

lattice, which do not affect the shape of the car but are critical to the quality and convergence of 

the simulation results. Hence, the final control volume comprises of seven planes in the x- and z-

direction and ten planes in the y-direction, as shown in Figure 5. 

 
Table 3 – Boundary values measured from the car shape and used to define the lattice. 

Direction Vehicle Boundaries [m] Lattice Boundaries [m] 

x [-0.88, 3.80] [-1.50, 5.00] 

y [-1.02, 1.02] [-2.00, 2.00] 

z [-0.31, 1.09] [-0.31, 3.20] 

 



 

 

9 

 

 
Figure 5 – Control volume used to generate the data set. 

The parameterization of the model is very similar to the case we presented previously. We 

selected the axial displacement of the remaining sections of the control planes. Considering the 

constraints and imposing symmetry of the lattice with respect to the mid xz-plane, it resulted in 

9 deformation parameters. The values of the parameters were randomly sampled according to a 

uniform distribution, and on intervals defined such that any pair of control planes would overlap 

(Figure 6), as in the previous case to avoid invalid designs.  

 

 
Figure 6 – Example of interval for moving the control points in the x-direction. 

The process to generate the data set is comprised of three main steps: (a) generating the 

directories with configuration files following the OpenFOAM requirements; (b) running the 

meshing, mesh quality assessment and FFD algorithms; (c) running the CFD simulations and (d) 

post-processing the results. The shape deformation is fundamentally the same as performed for 



 

 

10 

 

the previous data set, however the parallelization of the data processing and the use of third-

party software requires a more sophisticated workflow. 

 

In the first step, or pre-processing step, the objectives are to determine the structure of the FFD 

lattice, to sample the deformation parameters and to prepare the data structure to ensure 

compatibility with OpenFOAM. The parameterization and sampling were performed as in the 

previous case (scripted in a Python algorithm) and the algorithm resulted in two outputs: a text 

file with the parameter values and a directory for each case of the deformation (Figure 7), 

following the OpenFOAM file structure. 

 

 
 

Figure 7 – Structure of the directory used by OpenFOAM to perform the simulations 

After pre-processing, the next step is comprised of the generation, deformation and quality 

assessment of the meshes. The OpenFOAM algorithms blockMesh, snappyHexMesh and 

checkMesh generated the mesh on the fluid domain based on the initial shape, which was the 

same for all the cases. The initial mesh quality was evaluated based on the number of warnings, 

the maximum skewness and the extreme values of the aspect ratio [14]. In order to speed up the 

data generation, the algorithms were parallelized on 16 processors for each case, decomposing 

the mesh volume into 16 parts that were stored on individual subdirectories, as shown in 

Figure 8. The metrics, warnings and further information yielded by the algorithms were stored in 

log files, which could be later post-processed. 

 

 
 

Figure 8 – Structure of the simulation directory after meshing the initial domain. The directory of each processor 

contains the solutions and mesh information related to 1/n-th of the domain, where n is the number of processors. 

When the initial meshing was finished, for each case, a Python script with the implementation of 

the FFD algorithm was called with the deformation parameters as arguments. In order to deform 
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the mesh, the script accessed the files with the coordinates of the mesh nodes of each partition 

of the domain and applied the FFD algorithm on the nodes using the same initial lattice and 

deformation parameters. Here, a large portion of the domain was not embedded into the lattice, 

therefore, a conditional statement was added to the algorithm, in order to filter the points read 

from the files and to ensure that the FFD operation was applied only on the points within the 

lattice span. In addition, the OpenFOAM code was written in C++ language, such that the files 

with the mesh properties had a specific layout that is required by the language. Hence, the 

Python script was complemented with a text manipulation section prior and after the FFD 

operations. This ensured that the reading and writing operations followed the OpenFOAM 

templates. After deforming the model, the checkMesh algorithm performed the quality 

assessment of the deformed mesh, appending the metrics to the initial log file, and the fluid flow 

is calculated for the deformed meshed. 

 

After all simulations finished, the post-processing step was performed. Here, a Python algorithm 

reads the checkMesh log files, and restores the quality metrics of the deformed meshes. After 

that, the same algorithm retrieves the forces acting on the car shape from the simulation output 

files and derives the average drag and lift forces over the last 50 steps of the simulation. Finally, 

the obtained values were appended to the file with the deformation parameters, storing the 

complete set of information in a final text file, which is structured as shown in Table 4. In total, 

we generated 300 mesh deformations. Additional details, including the application of the data 

set, are documented in [15]. 

 
Table 4 - Structure of the data set containing the mesh quality measurements 

 
 

According to the ECOLE data management plan document (D5.3), the data is classified as 

restricted, i.e., the data set can be accessed via the Bear Data sharing repository of the University 

of Birmingham (https://beardatashare.bham.ac.uk/login) after registration has been requested 

and completed, or by contact through the form provided on the ECOLE webpage:  

https://ecole-itn.eu/contact/.  

 

2.2. Engineering Data for Geometric Deep Learning 

The main advantages of working on synthetic data sets are the control over the number of 

samples and the distribution of features. Such characteristics enable us to test and validate new 

machine learning and optimization methods in a controlled environment (e.g. adjustable noise) 

improving on the current state of the art based on the underlying theory. However, in real-world 

applications data is often noisy (with non-trivial distributions) with different types of 

parameterization and the distribution of features might also be unknown. Therefore, in order to 

test our algorithms on an environment closer to real-world conditions, we use benchmark 

ID x_1 x_2 … x_9 check_failures max_skewness max_aspect_ratio F_x F_z

DEFORM_1 0.076 0.336 … 0.349 5 1.58E+02 3.41E+97 408.471 671.012

… … … … … … … … … …

DEFORM_300 0.765 0.626 … -0.055 5 528.441 6.97E+98 587.370 41.657

File name: D2_TUMDrivAerMeshQuality-FFDParametersAndMetrics-191101-RESTRICTED.dat
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geometric data sets. In addition, public benchmark geometric data sets allow different research 

groups to evaluate novel methods on standard geometries and compare results between 

different approaches. 

 

Geometric deep learning is a novel field in geometry processing where deep neural networks are 

utilized to find compact representations based on unsupervised learning. In literature, the 

models used for geometric deep learning often derive from the ShapeNet [16], ModelNet [17] or 

ABC [18] data sets. The first and second data sets contain about 52.000 and 128.000 labeled 3D 

models, respectively, which can be employed for data compression and classifications tasks [19-

21]. The ABC data set comprises one million 3D shapes, mostly mechanical components, that 

have been employed for the research for determining surface normal angles [18] and may be 

used for further applications, such as 3D-edge detection and shape reconstruction algorithms 

[22-24]. For the ECOLE research activities, so far, we have used the models from ShapeNet [16] 

for data compression with point cloud autoencoders. Therefore, we focus in this report on the 

characteristics of this specific data set. 

 

ShapeNet is a repository of 3D shapes from multiple semantic classes, categorized according to 

the Wordnet synsets [25]. Many of the models in the data set also contain annotations regarding 

names, geometric and physical properties, which can be used in classification and regression 

tasks. The repository can also be partitioned in subdivisions with cleaner models, i.e. single 

objects with the same orientation and manually verified, such as ShapeNetCore, or more densely 

annotated geometries. These models were used for testing different geometric deep learning 

architectures [21, 26-28]. In the context of the ECOLE project, we are particularly interested in 

point cloud autoencoders, focusing on data compression as a potential method for increasing the 

efficiency of high-dimensional CAE models. 

 

Hence, for training and testing point cloud autoencoders, we used the shapes in the car class of 

ShapeNetCore. More specifically, we used about 7500 point clouds with 2048 points uniformly 

sampled from the shapes, as used in [21] and made available by the authors. In the data set, the 

models are organized in directories according to the classes identified by an 8-digit numeric code. 

In the directories, the point clouds are stored as Polygon File Format (PLY) files and identified by 

unique alpha-numeric code with 32 digits. The models can be directly manipulated using third-

party software, such as Meshlab, however the authors in [21] provided Python scripts to decode 

the classes identifications into their names and retrieve the point clouds for training the deep 

learning models. The architectures validated using the ShapeNetCore data set were applied on 

studies published at the IEEE Symposium Series on Computational Intelligence (SSCI) in 2019 [29, 

30].  

 

However, while datasets like ShapeNet or ShapeNetCore contain the geometries of various 

objects, they do not provide engineering metrics like e.g. aerodynamic performance of different 

car models. Therefore, within the ECOLE project we take sets of geometries from these 

databases, eventually apply preprocessing techniques such as resampling or mesh cleaning and 

afterwards simulate them using OpenFOAM for aerodynamic performance. 
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Aligned with this objective, we are testing a process for preparing the original models from 

ShapeNetCore, saved as OBJ files, to be used in CFD simulations and geometric deep learning 

with higher-dimensional models (Algorithm 1). The process consists of Python and Meshlab 

server scripts, which scale and position the models with respect to the assumed setup for the 

CFD calculations, as well as convert the file format to STL and XYZ, which already have been used 

in previous tasks. Furthermore, directories with the CFD configuration files for OpenFOAM are 

generated, based on a template, such that the folders can be transferred directly to the 

simulation environment. 

 

Algorithm 1: Data generation from ShapeNetCore car class 

INPUT:  Shapes of the car class from ShapeNetCore 

Target refinement level (number of iterative element subdivisions, minimum edge length) 

Target directories to store the refined STL and point cloud models 

OpenFOAM simulation templates 

Required number of models 

FOR each model IN the ShapeNetCore data set: 

# Load the data 

1. Convert from the original format (OBJ) to STL, preserving the mesh characteristics 

2. Import the mesh to the Python environment as a variable and extract the nodes 

# Geometric operations 

3. Rescale the nodes coordinates from [-1, 1]³ to real size dimensions 

4. Align and position the model based on the setup of the CFD simulation 

5. Refine the model using Meshlab server, following the criteria given as input 

# Calculate geometric properties 

6. Calculate geometric features of interest, for example, surface area and volume, and store 

the calculated values 

# Save models and features 

7. Create directory with unique name (ID), based on the openFOAM template, and save the 

refined STL model in the corresponding location 

8. Convert the saved STL to a point cloud and save it in the target directory (input) as a XYZ 

file. The conversion and removal of point duplicates is performed with meshlab server 

9. Save the calculated features in a temporary text file, where the first column should contain 

the unique ID of the model 

IF the required number of models was achieved: BREAK 

 

Save the name and corresponding features of the models in a final text file 

 

 

For preliminary studies we generated a data set with the simulation results of drag and lift forces 

for 400 shapes from ShapeNetCore, structured as shown in Table 5. The data comprises an 

identifier to find the corresponding shape within the ShapeNetCore dataset along with the drag 

and downforce value calculated using our preprocessing process (Algorithm 1) and OpenFOAM. 
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Table 5 – Structure of the data set with the results of aerodynamic simulation on ShapeNetCore car models 

File name: 

D3_CFDExperimentsOnShapeNetCore_CFDForceResults_20200228_RESTRICTED.dat 

ID F_x F_z 

shape_51b8011a2eaaed85cde8c99e4b182f9 408.471 671.012 

… … … 

shape_6283a8fcea4976fe47bff85f09fd66b 587.370 41.657 

 

According to the ECOLE data management plan document (D5.3), the data is classified as 

restricted, i.e., the data set can be accessed via the Bear Data sharing repository of the University 

of Birmingham (https://beardatashare.bham.ac.uk/login) after registration has been requested 

and completed, or by contact through the form provided on the ECOLE webpage:  

https://ecole-itn.eu/contact/. Since we expect that these aerodynamic performance values will 

be of interest to a larger group of researchers, we aim to improve the dataset to be closer to 

actual engineering cases and make it directly publicly available without registration. The target is 

to achieve stable aerodynamic performance values for a larger set of geometries of the 

ShapeNetCore data set. We plan to announce the publication of our data set via the ECOLE 

webpage and twitter account. 

3. Summary and outlook 

Collecting results from multiple optimization runs and design cases is central to building a base 

from which machine learning models can abstract design features and, ideally, learn the 

embedded experience of the expert. Therefore, we developed different data generation 

algorithms and simulation processes to create data sets for training and testing machine learning 

algorithms in the framework of the ECOLE project. 

 

In this report, we have presented the processes to manipulate and perform simulations on CAE 

models, which yield structured data sets for machine learning purposes. Our methods rely on 

publicly available benchmark shapes, such as the TUM DrivAer model, and free form 

deformation, a state-of-the-art shape morphing technique. In the discussion about the methods, 

we also presented the parameters used to generate the cases contained in the data sets, such 

that the results can be reproduced in future experiments. Furthermore, the data comprise not 

only geometric information, but also engineering metrics, such as mesh quality and aerodynamic 

forces, such that they can be employed in different machine learning tasks, such as geometric 

deep learning and clustering. 

 

Finally, the generation of data sets is a work in progress. Due to the uniqueness of multiple topics 

covered by the ECOLE project, the processes are tailored for each application. Therefore, the 

work presented in this report will be extended in the future, aggregating more engineering 

performance metrics and different types of shapes. 

 

In this report, we have provided the necessary information to allow the reproducibility of the 

data sets that we have generated. The equations used to implement the FFD algorithm are 
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available in [5] and can be scripted in different programming languages, depending on the final 

application. By assigning the same control lattice configurations and range of deformation 

parameters, an informed user should be able to reproduce the results contained in the files 

described in this report. The files containing the original geometries of the TUM DrivAer model 

and ShapeNetCore must be requested directly from their respective developers. Extensive 

descriptions of the TUM DrivAer model and access to the geometry files can be found at 

https://www.mw.tum.de/aer/forschungsgruppen/automobilaerodynamik/drivaer/ (accessed 

on 04. March 2020). ShaepeNetCore geometries and descriptions can be found at 

https://www.shapenet.org/  (accessed on 04. March 2020).   

 

According to the ECOLE data management plan document (D5.3), all three datasets D1, D2 and 

D3 are classified as restricted, i.e., the data set can be accessed via the Bear Data sharing 

repository of the University of Birmingham (https://beardatashare.bham.ac.uk/login) after 

registration has been requested and completed, or by contact through the form provided on the 

ECOLE webpage: https://ecole-itn.eu/contact/. 
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