
Exploring Dimensionality Reduction Techniques
for Efficient Surrogate-Assisted Optimization

Sibghat Ullah∗, Duc Anh Nguyen∗, Hao Wang†, Stefan Menzel§, Bernhard Sendhoff§, and Thomas Bäck∗
∗Leiden Institute of Advanced Computer Science (LIACS), Leiden University, The Netherlands

Email: {s.ullah,d.a.nguyen,t.h.w.baeck}@liacs.leidenuniv.nl
†Sorbonne Université, CNRS, LIP6, Paris, France

Email: hao.wang@lip6.fr
§Honda Research Institute Europe GmbH (HRI-EU), Offenbach/Main, Germany

Email: {stefan.menzel,bernhard.sendhoff}@honda-ri.de

Abstract—Constructing surrogate models of high dimensional
optimization problems is challenging due to the computational
complexity involved. This paper empirically investigates the
practicality of major dimensionality reduction techniques for
encapsulating the high dimensional design space into compact
representations. Such low dimensional representations of the
design space can be utilized for constructing the surrogate
models efficiently. Based on historical mainstays and recent
developments in deep learning, we study four dimensionality
reduction techniques in this paper, namely Principal Component
Analysis, Kernel Principal Component Analysis, Autoencoders
and Variational Autoencoders. We evaluate and compare these
techniques based on quality assessments of the corresponding
low dimensional surrogate models on a diverse range of test
cases. These test cases are defined on combinations of three
dimensionsalities, ten well-known benchmark problems from the
continuous optimization domain and two surrogate modeling
techniques, namely Kriging and Polynomials. Our results clearly
demonstrate the superiority of Autoencoders and Principal Com-
ponent Analysis on the criteria of modeling accuracy and global
optimality respectively.

Index Terms—dimensionality reduction, surrogate-assisted op-
timization, machine learning, deep latent-variable models, prin-
cipal component analysis

I. INTRODUCTION

Continuous optimization problems in real-world application
domains, e.g., mechanics, engineering, economics and finance,
can encompass some of the most complicated optimization
setups. Principal obstacles in solving the optimization tasks
in these areas involve multimodality [1], high dimensional-
ity [2] and unexpected drifts and changes in the optimization
setup [3], [4]. Due to these obstacles and the black-box
assumption on the optimization setup, traditional optimization
schemes, e.g., gradient descent and Newton methods, are
rendered inapplicable [5]. The majority of the optimization
schemes applied in these areas now focus on utilizing direct
search methods [3], [6], in particular Evolutionary Algorithms
(EAs) [7] and Surrogate-Assisted Optimization (SAO) [8]. In
this work, we focus on SAO for high dimensional cases.

SAO [8] refers to solving the optimization problem with
the help of a surrogate model, which replaces the actual
function evaluations by the model prediction. The surrogate
model approximates the true values of the objective function

under consideration. This is generally done if the objective
function is too complex and/or costly, and is therefore hard
to optimize directly [9]. The abstraction provided by the
surrogate models is useful in a variety of situations. Firstly,
it simplifies the task to a great extent in simulation based
modeling [8] and optimization. Secondly, it provides the op-
portunity to evaluate the fitness function indirectly if the exact
computation is intractable [9]. In addition, surrogate models
can provide practically useful insights, e.g., space visualization
and comprehension [8]. Despite these advantages, SAO faces
many limitations [10] in constraint handling, dynamic opti-
mization, multi-objective optimization and high dimensional
optimization.

Modeling high dimensional optimization problems with
SAO is challenging [2] due to two main reasons. Firstly, more
training data is required to achieve a comparable level of mod-
eling accuracy as the dimensionality increases [8]. Secondly,
training time complexity often increases rapidly w.r.t. both,
the dimensionality and the number of training data points [8],
[10]. Consequently, constructing the surrogate model becomes
costlier. To highlight this issue, upper bounds on the time com-
plexities of the most common surrogate models are presented
in Table I. Note that in Table I, D, N , Ntrees, Nsv and K stand
for the dimensionality, the number of training data points, the
number of trees in Random Forest (RF), the number of support
vectors in Support Vector Machines (SVMs) and the number
of neighbours in K-Nearest Neighbours (KNNs) respectively.
From Table I, it can be deduced that higher dimensionality can
severely affect the computational budget in SAO in two ways:
directly, i.e., by a higher value of D, and indirectly, i.e., by a
higher value of N , Ntrees, Nsv and K.

Various methodologies have been proposed to deal with the
issue of high dimensionality in SAO including divide-and-
conquer [11], variable screening [12] and mapping the data
space to a lower dimensional space [13] using dimensionality
reduction techniques (DRTs). One of the most common DRTs
is Principal Component Analysis (PCA) [14]. PCA can be
defined as the orthogonal projection of the data onto a lower
dimensional linear space, known as the “principal subspace”,
such that the variance of the projected data is maximized [15].
Various generalized extensions of PCA have been established

TABLE I
TRAINING AND PREDICTION TIME COMPLEXITIES OF THE MOST COMMON

SURROGATE MODELS. NOTATION: NTREES IS THE NUMBER OF TREES IN
RANDOM FOREST, NSV IS THE NUMBER OF SUPPORT VECTORS, AND K

THE NUMBER OF NEIGHBOURS IN K-NEAREST NEIGHBOURS.

Model Training Prediction
Quadratic Regression O(D4N +D9 +D2) O(D2)
Random Forest O(N2DNtrees) O(NNtrees)
Support Vector Machines O(N2D +N3) O(DNsv)
K-Nearest Neighbours O(1) O(KD)
Kriging O(N3D) O(ND)

in the literature such as Kernel PCA [16], Probabilistic
PCA [17], [18] and Bayesian PCA [19]. On the other hand,
Autoencoders (AEs) [20], [21] have been contemplated as
feed-forward neural networks (FFNNs) trained to attempt to
copy their input to their output, so as to learn the useful low
dimensional encoding of the data. Like PCA, AEs have also
been extended over the years by generalized frameworks such
as Sparse Autoencoders [22], Denoising Autoencoders [23],
Contractive Autoencoders [24] and Variational Autoencoders
(VAEs) [25]–[27]. Besides PCA and AEs, other important
DRTs include Isomap [28], Locally-Linear Embedding [29],
Laplacian Eigenmaps [30], Curvilinear component analy-
sis [31] and t-distributed stochastic neighbor embedding [32].

In this paper, we evaluate and compare four of the most
important DRTs mentioned above, namely PCA, Kernel PCA,
AEs and VAEs. We choose PCA and AEs due to their his-
torical significance, since both have been employed regularly
for dimensionality reduction, lossy data compression, feature
learning and data visualization [15], [20], [33] in machine
learning. We incorporate Kernel PCA due to the generalized
non-linear extension of the classical PCA algorithm [16].
Similarly, we consider VAEs in this paper due to the presence
of the non-linear stochastic encodings [25], [34] of the data
space which can be utilized for constructing the surrogate
models efficiently. The focal point of this paper is to provide
a novel perspective on the applicability of these DRTs in
SAO. This is accomplished by performing an extensive quality
assessment of the corresponding low dimensional surrogate
models (LDSMs) on a diverse range of test cases. For a
comprehensive overview on DRTs, please refer to the survey
papers [35], [36].

The remainder of this paper is organized as follows. We
present the basic introduction to surrogate modeling and the
DRTs in section II. Section III provides the blueprint for
dimensionality reduction in SAO. In section IV, we present the
experimental design to empirically evaluate and compare these
techniques based on quality assessment of the corresponding
LDSMs. This is followed by our experimental results in
section V. Finally, we discuss the conclusions of the paper
along side potential future research in section VI.

II. BACKGROUND

In this paper, we are aiming at minimizing real-valued
black-box problems f :S ⊆ RD → R, where we only have
access to evaluating the function value and any analytical

properties, e.g., gradient/Hessian/convexity, are not available
to the optimization process [2]. In this section, we first provide
a brief introduction to surrogate modeling and then move
forward to discuss the DRTs studied in this paper.

A. Surrogate Modeling

By constructing surrogate models [8], we aim to learn an
approximation f̂(x) of the target problem f , based on some
evaluated data points {x1,x2, . . . ,xN} [8]. Various sampling
methods are proposed to generate such data points, e.g., Latin
hyper-cube sampling [37], Plackett-Burman [38], and Box-
Behnken [39] design. The quality of the surrogate models is
significantly determined by the training sample size N , the
choice of sampling method and the criteria to appraise the
surrogate models.

B. Principal Component Analysis

Principal Component Analysis (PCA) is a data preprocess-
ing method, which is commonly employed for dimensionality
reduction, feature engineering, and data visualization [14],
[15]. PCA learns a linear map RD → RD that transforms the
original data set to a centered and uncorrelated one, meaning
after the transformation, the sample mean is zero and the
sample covariance matrix is diagonal [15]. Denoting by X =
[x1,x2, . . . ,xN]> the design matrix, PCA starts with calcu-
lating its sample mean µ = (1

N

∑N
i=1Xi1, . . . ,

1
N

∑N
i=1XiD)

and centering the original design matrix: X̄ = X−1Nµ (1N is
a vector containing N 1’s). Then, the first principal component
(PC) u1 can be identified by maximizing the variance of
X̄ projected onto u1, namely u1 = argmax‖u‖≤1 var{X̄u}.
Similarly, further components can be obtained by removing
the already-computed PCs from X̄ and then solving the same
maximization problem, i.e., X̄k = X̄−

∑k−1
i=1 X̄uiu

>
i , uk =

argmax‖u‖≤1 var{X̄ku}. Note that the variance of data pro-
jections onto each PCs (denoted by σ2

i = var{X̄ui}) is
monotonically decreasing concerning the order of PCs. It is not
difficult to verify that all PCs are necessarily the eigenvectors
of the sample covariance matrix X̄>X̄/N , sorted with respect
to the decreasing order of their corresponding eigenvalues.
Using PCA for dimensionality reduction, we select a subset
of computed PCs according to a user-specific criterion, e.g.,
to keep the first several PCs such that the variance of data
projections onto them sum up to a satisfying percentage of
the total variability of the original data. In this work, we
shall select the first L PCs where L is the size of the latent
dimensionality as described in the experimental section.

C. Kernel Principal Component Analysis

Kernel Principal Component Analysis (KPCA) takes the so-
called kernel trick [16], transforms the original data points
into a high-dimensional (usually infinite-dimensional) fea-
ture space using a non-linear feature map, and performs
the linear PCA therein. Formally, we denote the feature
map as φ:RD → H, where the feature space H is a
reproducing kernel Hilbert space (RKHS) equipped with a

X Encoder
f (x)

Z

~
X

Decoder
g (z)

Fig. 1. A schematic diagram of AEs where green arrows indicate the encoding
operation and the red ones are for the decoding operation.

X Encoder
Qϕ (z | x)

μϕ

σϕ

z = μϕ+σϕϵ

Decoder
Pθ (x | z)

ϵ ~ N (0,I)

μθ

σθ

~
X

Fig. 2. A schematic diagram of VAEs where green arrows represents the
variational inference and the red ones entails the generative part, i.e., the
likelihood.

reproducing kernel k(x, ·) := φ(x) and an inner prod-
uct 〈φ(x), φ(x′)〉H = k(x,x′). For the transformed data
points φ(x1), φ(x2), . . . , φ(xN), we first calculate their mean
φ̄ = 1

N

∑N
i=1 φ(xi) and the pairwise inner product K =

(k(xi,xj))ij . Then, by seeking a point u1 ∈ H that maximizes
the variability of data projections onto it, we identify the first
PC, namely u1 = argmax‖u‖H≤1

1
N

∑N
i=1〈u, φ(xi) − φ̄〉H.

Without further derivations, we state that the solution to this
problem is u1 =

∑N
i=1 α

(1)
i (φ(xi) − φ̄), where α

(1)
i is the

eigenvector that corresponds to the largest eigenvalue of matrix
HKH (H = IN×N − N−11N). As with linear PCA, we
proceed to compute further components in the same way after
removing data projections onto the already-computed PCs. In
essence, all PCs take the same form of u1, and the coefficients
thereof are determined by eigenvectors of HKH.

D. Autoencoders

Autoencoders (AEs) [20], [21] are a family of deep gen-
erative models which approximate the data distribution by
constructing a lower dimensional representation of the data
points. An AE consists of two feed-forward neural networks
(FFNNs) for the encoder and decoder respectively. The en-
coder z = f(x) takes the input x and produces a code z
used to represent the input. The decoder takes this code and
produces a reconstruction x′ = g(z) of the original data. AEs
are restricted in ways that allow them to learn the most salient
features of the data. We employ Undercomplete Autoencoders
(UAEs) in this paper, which are constrained to have smaller
dimensions for z when compared with the original data x.
The learning process in UAEs focuses on minimizing a loss
function L(x, g(f(x))) such as mean squared error (MSE). A
graphical illustration of a standard AE is presented in figure 1.

E. Variational Autoencoders

Variational autoencoders (VAEs) [25], [26] are AEs which
provide a principled methodology for employing deep latent-
variable models and can be used to learn complex data
distributions in a generative fashion. The data x ∈ RD and

the latent variables z ∈ RL are jointly related by the chain
rule,

pθ(x, z) = pθ(x|z)pθ(z) (1)

where L < D, and θ denote the associated set of parameters.
More specifically, a VAE consists of two coupled but inde-
pendently parameterized models: an inference (also called an
encoder or recognition) model and a generative (also called a
decoder) model; both of which are implemented by non-linear
functions such as neural networks [20], [27]. The encoder
encodes the input data x to the set of latent variables z, and
the decoder maps these latent variables z back to reproduce x.
The VAE treats the conditional probability distribution pθ(x|z)
as a function approximation of x. However, the non-linear
mapping from z to x can not be implemented directly because
of the intractable posterior pθ(z|x) on the latent-variable.
The VAE thus introduces the variational distribution qφ(z|x)
parameterized by φ to approximate the intractable posterior
pθ(z|x). The parameters for the approximate posterior qφ(z|x)
are generated by the encoder network. Lastly, the variational
approximation qφ(z|x) of pθ(z|x) enables the use of Evidence
Lower Bound (ELBO) such as:

log pθ(x) ≥ −KL(qφ(z|x)||p(z)) + Ez∼qφ(z|x)[log pθ(x|z)]
(2)

where KL(Q||P) is the Kullback-Leibler divergence between
two probability distributions Q and P . In [25], the variational
posterior qφ(z|x) is modeled by a Gaussian N (µ,diag(σ2)),
where the parameters µ and σ2 are the outputs of the inference
network and diag corresponds to the diagonal covariance
structure of the Gaussian distribution. The prior p(z) is as-
sumed to be a standard Gaussian distribution. The training
process focuses on maximizing ELBO which yields the opti-
mal parameters for the inference and generative networks. A
low variance estimator can be substituted with the help of the
reparameterization trick z = µ + σ � ε ; where ε ∼ N (0, I)
is a vector of standard Gaussian variables and � denotes the
element-wise product:

Ez∼qφ(z|x)[log pθ(x|z)] = Eε∼N (0,I)[log pθ(x|z = µ + σ � ε)]
(3)

In summary, VAEs are AEs which provide a principled
framework to learn deep latent-variable models efficiently by
combining the Variational Inference (VI) and the reparam-
eterization trick. Due to this reason, they have become a
very important tool for dimensionality reduction, lossy data
compression, representation learning and generative modeling.
Detailed discussion on VAEs, VI and the reparameterization
trick can be found in [27], whereas the graphical representation
of a VAE is presented in figure 2.

III. DIMENSIONALITY REDUCTION IN SURROGATE
MODELING

As already discussed in section I, the high dimensionality
is one of the major difficulties in the application of SAO.
In this paper, we propose to conduct empirical comparisons
among four major DRTs discussed previously for building low

dimensional surrogate models (LDSMs). In particular, we are
interested in evaluating the effectiveness of the low dimen-
sional representations of the data to substitute the features of
the original data for constructing the LDSMs. The surrogate
models constructed from these encodings can be represented as
f̂ : G ⊆ RL → R, where G is the low dimensional image of the
original domain S. Building the surrogate models in this lower
dimensional space is beneficial for two main reasons. Firstly,
we can alleviate the curse of dimensionality by controlling the
value of L. Secondly, with some tolerance, low dimensional
representations in G contain enough information to reconstruct
the original features in S. Together, these rationales allows us
to make a compromise on the quality of the surrogate model
and the computational budget. Intuitively, if L is very close
to D, the performance of the LDSM is expected to be similar
to the baseline surrogate with dimensionality D. On the other
hand, if L� D, the performance of the LDSM is expected to
be worse than the baseline due to the loss of information.
Overall, we believe it is crucial to utilize the DRTs for
constructing the surrogate models in high dimensional cases
with limited computational resources. We now discuss the
experimental setup to evaluate the effectiveness of the DRTs
previously introduced to construct the LDSMs.

IV. EXPERIMENTAL SETUP

Here, we briefly introduce the benchmark problem set
chosen in this work and describe how training and testing
data sets are generated from this problem set. Then, we
present the performance metric used here and show details
of the hyper-parameter optimization (HPO) procedure applied
to the surrogate models. A flowchart of the entire experimental
procedure is provided in figure 3 for clarification.

A. Test Cases

We select ten unconstrained, noiseless, single-objective op-
timization problems from the continuous benchmark function
test-bed known as “Black-Box-Optimization-Benchmarking”
(BBOB) [40]. Note that BBOB provides a total of twenty
four such functions divided in five different categories namely
“Separable Functions”, “Functions with low or moderate con-
ditioning”, “Functions with high conditioning and unimodal”,
“Multi-modal functions with adequate global structure” and
“Multi-modal functions with weak global structure” respec-
tively. We select two functions from each of these categories
to diversify the landscape of our test cases. The selected
functions are f2, f3, f7, f9, f10, f13, f15, f16, f20 and
f24 respectively. Each of these test functions is evaluated
on three different values of dimensionality: 50, 100, and 200
respectively. Additionally, all test functions mentioned here are
subject to minimization. Please refer to [40] for more details
on the test functions and their characteristics.

B. Generating the Training Data

After the selection of the test cases, we move forward to
the data generation and preprocessing. For the purpose of data

generation, the choice of training sample size N is problem-
dependent. The practical advice however is to begin with
N = βD [8], where β is usually a low valued scalar and D
corresponds to the dimensionality of the problem. Therefore,
we proceed with β = 20. Choosing β = 20 is based on
previous empirical evidence [4] as this results in a training data
set of moderate size, which is neither too small to train nor
too big to hinder the computational efficiency. Additionally,
the test data set with size M = 0.2βD is generated to
evaluate the modeling accuracy of the LDSMs as prescribed
in section IV-E. Notably, we also make sure that the training
and test data sets are completely disjoint, i.e., no data point
is shared between the two sets. The sampling locations for
both data sets are chosen using a maximum-distance Latin
hyper-cube sampling [37] scheme. The data preprocessing in
this study is a rather straightforward task involving only the
rescaling of the features between 0 and 1.

C. Implementation Details

We employ four DRTs in this paper namely PCA, KPCA,
AEs and VAEs respectively. For each of these techniques,
specifying L is crucial since it may affect the quality of the
corresponding LDSM. Therefore, for each distinct value of
the original dimensionality D, we choose three values for L
as: L ∈ {0.7D, 0.4D, 0.1D}. As an example, L ∈ {35, 20, 5}
when D = 50. An important thing to note is that in AEs
and VAEs, both the encoder and the decoder have four hidden
layers each with hyperbolic tangent non-linearity. For PCA
and KPCA, we perform a linear transformation of the orig-
inal features before performing the dimensionality reduction.
We also choose two surrogate modeling techniques namely
Kriging and Polynomial Regression (degree=2 with elastic-
net penalty) [41]. Notably, both sets of techniques, i.e., the
dimensionality reduction and the surrogate modeling tech-
niques, have some hyper-parameters. Therefore, it is crucial to
tune these hyper-parameters to get the best quality surrogate
models.

D. Hyper-parameter Optimization

At this stage, however, we have a total of 720 cases due to
four DRTs, two surrogate modeling techniques, ten test func-
tions, three values of the original dimensionality D and three
different values for L. Therefore, performing HPO for each of
these 720 cases is infeasible. Hence, we reduce the number
of cases to a total of 72 by aggregating the performance of
the LDSMs on all ten test functions. This implies that we
optimize the hyper-parameters for each of the 72 cases defined
on combinations of three values of the original dimensionality
D, three values of L, two surrogate modeling techniques
and four DRTs. In each of these 72 cases, we optimize
the hyper-parameters for both the dimensionality reduction
and the surrogate modeling techniques together based on the
aggregated quality of the corresponding LDSMs on all ten test
functions. The quality assessment for an individual LDSM,

START SAMPLING PLAN
(DoE)

GENERATE & PRE-
PROCESS DATA

SETS DIMENSIONALITY
REDUCTION

CONSTRUCT
SURROGATE

MODELS

HYPER-PARAMETER OPTIMIZATION

COMPUTE
MODELING
ACCURACY

PERFORM GLOBAL
OPTIMIZATION

COMPUTE MEDIAN
ABSOLUTE DIFFERENCES
OF GLOBAL OPTIMA AND

FUNCTION VALUES
END

Fig. 3. Flowchart of the experimental setup. Each step of the process is shown in grey rectangles. The central rectangles indicates the hyper-parameter
optimization loop based on the modeling accuracy of the surrogates.

i.e., for a particular test function such as f2, is measured by
taking the so-called relative mean absolute error:

RMAE =
1

M

M∑
i=1

100

(
|yi − ŷi|
|yi|

)
(4)

where yi and ŷi are the target and predicted values for the ith
test data point and M denotes the size of the test data set.
For HPO, we measure this RMAE for all ten test functions
by specifying D, L, the dimensionality reduction and the
surrogate modeling technique. After this, we take the median
of the RMAE values on all ten test functions. The goal of the
HPO then becomes to find out the best configuration of the
hyper-parameters which minimizes this median. This process
is repeated for all 72 cases. Overall, this approach makes the
HPO feasible and ensures that the configuration of the hyper-
parameters generalizes well across all ten test functions.

We employ Tree Parzen Estimator algorithm (TPE) [42],
[43] to perform the HPO for each of the 72 cases discussed
above by specifying D, L, the dimensionality reduction and
the surrogate modeling technique. TPE algorithm is inspired
from Bayesian Optimization and we utilize the Pythonic
framework Hyperopt [43] to implement it. The number of
function evaluations are restricted to 150 for finding the
best configuration of the hyper-parameters using TPE as the
maximum number of hyper-parameters in any of the 72 cases
is six.

E. Evaluation Criteria

In this work, we choose two criteria to evaluate and compare
the LDSMs. The first criterion is that of the modeling accuracy.
To compare the LDSMs on this criterion, we first construct
the LDSMs in all 720 cases after performing the HPO. This
implies that we construct and compare four LDSMs for each
distinct value of D, L, the surrogate modeling technique and
the test function. These four LDSMs are based on PCA,
KPCA, AEs and VAEs respectively. Note that here the LDSMs
which share the same test function will also share the same
configuration of the hyper-parameters as an implication of the
HPO procedure discussed before. Since we vary the surrogate
modeling technique, the test function, and the values for D and
L, we can perform a comprehensive analysis of the modeling
accuracy of the LDSMs based on a particular DRT. We employ
RMAE, see Eq. (4), as the performance measure for this
criterion.

The second criterion to compare the LDSMs is the quality
of the proposed optimal solution. Please note again that all test
functions are subject to minimization in this paper. To compare
the LDSMs for this criterion, we proceed with the same setup

as before. This implies that we construct the LDSM in each
of the 720 cases based on the best configuration of the hyper-
parameters, and employ the corresponding LDSM to substitute
the exact function evaluations within the optimization loop
of the Limited-memory Broyden–Fletcher–Goldfarb–Shanno
(L-BFGS) algorithm [44] for global optimization. For this,
maximum function evaluations are restricted to 1000×D. We
perform a total of 30 runs of L-BFGS for each LDSM by
varying the starting position, i.e., initial guess.

The resulting optimum in each of these 30 runs is plugged
into the test function to achieve the optimal function value.
After this procedure, we compare the LDSMs based on two
aspects. Firstly, we find the median absolute difference of
the globally optimal function value with the proposed optimal
function values based on 30 runs of global optimization. This
is done for each of the 720 cases. The second aspect to
compare the LDSMs is the median absolute difference of the
proposed optimums with the global optimum based on 30 runs,
i.e., the median absolute difference of the globally optimal
point on the search space with the optimal points proposed
by the LDSM. Together, these two aspects allow us to make
a comprehensive analysis on the performance of the LDSMs
w.r.t the criterion of global optiamlity. We now move forward
to share the results obtained from this experimental setup.

V. RESULTS

In this section, we present the results obtained from the
above experimental setup. We first share the results concerning
the criterion of the modeling accuracy. For this, we share the
graphs illustrating the modeling accuracy of the LDSMs using
Kriging and Polynomial Regression (degree=2 with elastic-
net penalty) in figures 4 and 5 respectively. Both figures
contain a total of nine subplots each based on three distinct
values of D and L respectively. Each subplot contains ten
bar charts corresponding to the ten test functions discussed in
section IV-A. Furthermore, each bar chart shares the RMAE
of the four LDSMs based on the DRTs studied in this paper.
From figures 4 and 5, we observe that the LDSMs based
on AEs achieve the highest modeling accuracy, i.e., lowest
RMAE values, in 132/720 cases. This is clearer to notice for
D ∈ {50, 100}, and L ∈ {0.7D, 0.4D} in both figures. In
most of the remaining cases, the RMAE values are analogous,
though there are some exceptional cases where the LDSMs
based on other DRTs perform better. Notably, the modeling
accuracy of the LDSMs increases with D, i.e., lower RMAE
values, but the same is untrue for L. From figures 4 and 5, we
can also observe that the LDSMs perform likewise for both
surrogate modeling techniques.

F2 F3 F7 F9 F10 F13 F15 F16 F20 F240

10

20

30

40

50

%
 R

M
AE

L=0.7D

D=
50

F2 F3 F7 F9 F10 F13 F15 F16 F20 F240

10

20

30

40

50
L=0.4D

F2 F3 F7 F9 F10 F13 F15 F16 F20 F240

10

20

30

40

50
L=0.1D

F2 F3 F7 F9 F10 F13 F15 F16 F20 F240

5

10

15

20

25

30

%
 R

M
AE

D=
10

0

F2 F3 F7 F9 F10 F13 F15 F16 F20 F240

5

10

15

20

25

30

F2 F3 F7 F9 F10 F13 F15 F16 F20 F240

5

10

15

20

25

30

F2 F3 F7 F9 F10 F13 F15 F16 F20 F240

5

10

15

20

%
 R

M
AE

D=
20

0

F2 F3 F7 F9 F10 F13 F15 F16 F20 F240

5

10

15

20

F2 F3 F7 F9 F10 F13 F15 F16 F20 F240

5

10

15

20

PCA KPCA AEs VAEs

Fig. 4. Modeling accuracy of the low dimensional Kriging surrogates for all test cases is presented. The test cases are defined on combinations of ten test
functions, four dimensionality reduction techniques and three distinct values for D and L each.

F2 F3 F7 F9 F10 F13 F15 F16 F20 F240

10

20

30

40

50

%
 R

M
AE

L=0.7D

D=
50

F2 F3 F7 F9 F10 F13 F15 F16 F20 F240

10

20

30

40

50
L=0.4D

F2 F3 F7 F9 F10 F13 F15 F16 F20 F240

10

20

30

40

50
L=0.1D

F2 F3 F7 F9 F10 F13 F15 F16 F20 F240

5

10

15

20

25

30

%
 R

M
AE

D=
10

0

F2 F3 F7 F9 F10 F13 F15 F16 F20 F240

5

10

15

20

25

30

F2 F3 F7 F9 F10 F13 F15 F16 F20 F240

5

10

15

20

25

30

F2 F3 F7 F9 F10 F13 F15 F16 F20 F240

5

10

15

20

%
 R

M
AE

D=
20

0

F2 F3 F7 F9 F10 F13 F15 F16 F20 F240

5

10

15

20

F2 F3 F7 F9 F10 F13 F15 F16 F20 F240

5

10

15

20

Fig. 5. Modeling accuracy of the low dimensional Polynomial surrogates (with degree=2 and elastic-net penalty) for all test cases is presented. The test cases
are defined on combinations of ten test functions, four dimensionality reduction techniques and three distinct values for D and L each.

F2 F3 F7 F9 F10 F13 F15 F16 F20 F24
101

102

103

104

105

106

107

108

M
ed

ia
n

|f
*

f |
L=0.7D

D=
50

F2 F3 F7 F9 F10 F13 F15 F16 F20 F24
101

102

103

104

105

106

107

108
L=0.4D

F2 F3 F7 F9 F10 F13 F15 F16 F20 F24
101

102

103

104

105

106

107

108
L=0.1D

F2 F3 F7 F9 F10 F13 F15 F16 F20 F24
101

102

103

104

105

106

107

108

109

M
ed

ia
n

|f
*

f |
D=

10
0

F2 F3 F7 F9 F10 F13 F15 F16 F20 F24
101

102

103

104

105

106

107

108

F2 F3 F7 F9 F10 F13 F15 F16 F20 F24
101

102

103

104

105

106

107

108

F2 F3 F7 F9 F10 F13 F15 F16 F20 F24
101

102

103

104

105

106

107

108

109

M
ed

ia
n

|f
*

f |
D=

20
0

F2 F3 F7 F9 F10 F13 F15 F16 F20 F24
101

102

103

104

105

106

107

108

109

F2 F3 F7 F9 F10 F13 F15 F16 F20 F24
101

102

103

104

105

106

107

108

109

PCA KPCA AEs VAEs

Fig. 6. Median absolute difference of the globally optimal function values with the proposed optimal function values for all test cases based on Kriging
surrogates is presented. The test cases are defined on combinations of ten test functions, four dimensionality reduction techniques and three distinct values
for D and L each.

F2 F3 F7 F9 F10 F13 F15 F16 F20 F24
101

102

103

104

105

106

107

108

M
ed

ia
n

|f
*

f |

L=0.7D

D=
50

F2 F3 F7 F9 F10 F13 F15 F16 F20 F24
101

102

103

104

105

106

107

108
L=0.4D

F2 F3 F7 F9 F10 F13 F15 F16 F20 F24
101

102

103

104

105

106

107

108
L=0.1D

F2 F3 F7 F9 F10 F13 F15 F16 F20 F24
101

102

103

104

105

106

107

108

109

M
ed

ia
n

|f
*

f |
D=

10
0

F2 F3 F7 F9 F10 F13 F15 F16 F20 F24
101

102

103

104

105

106

107

108

109

F2 F3 F7 F9 F10 F13 F15 F16 F20 F24
101

102

103

104

105

106

107

108

109

F2 F3 F7 F9 F10 F13 F15 F16 F20 F24
101

102

103

104

105

106

107

108

109

M
ed

ia
n

|f
*

f |
D=

20
0

F2 F3 F7 F9 F10 F13 F15 F16 F20 F24
101

102

103

104

105

106

107

108

109

F2 F3 F7 F9 F10 F13 F15 F16 F20 F24
101

102

103

104

105

106

107

108

Fig. 7. Median absolute difference of the globally optimal function values with the proposed optimal function values for all test cases based on Polynomial
surrogates (with degree=2 and elastic-net penalty) is presented. The test cases are defined on combinations of ten test functions, four dimensionality reduction
techniques and three distinct values for D and L each.

F2 F3 F7 F9 F10 F13 F15 F16 F20 F24
25

26

27

28

M
ed

ia
n

|X
*

X|
L=0.7D

D=
50

F2 F3 F7 F9 F10 F13 F15 F16 F20 F24
24

25

26

27
L=0.4D

F2 F3 F7 F9 F10 F13 F15 F16 F20 F24
21

22

23

24

25
L=0.1D

F2 F3 F7 F9 F10 F13 F15 F16 F20 F24
26

27

28

29

M
ed

ia
n

|X
*

X|
D=

10
0

F2 F3 F7 F9 F10 F13 F15 F16 F20 F24
25

26

27

28

F2 F3 F7 F9 F10 F13 F15 F16 F20 F24
22

23

24

25

26

F2 F3 F7 F9 F10 F13 F15 F16 F20 F24
27

28

29

210

M
ed

ia
n

|X
*

X|
D=

20
0

F2 F3 F7 F9 F10 F13 F15 F16 F20 F24
26

27

28

29

F2 F3 F7 F9 F10 F13 F15 F16 F20 F24
23

24

25

26

27

PCA KPCA AEs VAEs

Fig. 8. Median absolute difference of the global optimum with the proposed optimum for all test cases based on Kriging surrogates is presented. The test
cases are defined on combinations of ten test functions, four dimensionality reduction techniques and three distinct values for D and L each.

F2 F3 F7 F9 F10 F13 F15 F16 F20 F24
25

26

27

28

M
ed

ia
n

|X
*

X|

L=0.7D

D=
50

F2 F3 F7 F9 F10 F13 F15 F16 F20 F24
24

25

26

27
L=0.4D

F2 F3 F7 F9 F10 F13 F15 F16 F20 F24
21

22

23

24

25
L=0.1D

F2 F3 F7 F9 F10 F13 F15 F16 F20 F24
26

27

28

29

M
ed

ia
n

|X
*

X|
D=

10
0

F2 F3 F7 F9 F10 F13 F15 F16 F20 F24
25

26

27

28

F2 F3 F7 F9 F10 F13 F15 F16 F20 F24
22

23

24

25

26

F2 F3 F7 F9 F10 F13 F15 F16 F20 F24
27

28

29

210

M
ed

ia
n

|X
*

X|
D=

20
0

F2 F3 F7 F9 F10 F13 F15 F16 F20 F24
26

27

28

29

F2 F3 F7 F9 F10 F13 F15 F16 F20 F24
23

24

25

26

27

Fig. 9. Median absolute difference of the global optimum with the proposed optimum for all test cases based on Polynomial surrogates (with degree=2 and
elastic-net penalty) is presented. The test cases are defined on combinations of ten test functions, four dimensionality reduction techniques and three distinct
values for D and L each.

Next, we report the results concerning the criterion of the
global optimality. For this, we share the median absolute
difference of the globally optimal function values with the
proposed optimal function values for all 720 cases in figures 6
and 7 based on the explanation provided in section IV-E.
Both figures 6 and 7 contain a total of nine subplots each
based on three distinct values of D and L respectively. Each
subplot contains ten bar charts corresponding to the ten test
functions discussed in section IV-A. Furthermore, each bar
chart shares the median absolute difference (lower is better)
of the globally optimal function values with the proposed
optimal function values. From figure 6 which depicts these
results for Kriging; it can be observed that PCA, KPCA and
VAEs perform similarly in most cases, whereas AEs perform
poorly. The performance of the AEs especially deteriorates
for D = 100 and L = 0.1D. In the majority of the remaining
cases, PCA performs better than the other DRTs. In the case
of Polynomials in figure 7, all four DRTs perform likewise
in most cases except for L = 0.1D, where we observe AEs
perform better than the rest in 15/30 cases.

Similarly, plots depicting the median absolute difference
(lower is better) of the global optima with the proposed optima
for all 720 cases are provided in figures 8 and 9. Note that in
figures 8 and 9, only the upper portions of the bar plots have
been plotted to distinguish between the LDSMs more clearly.
From figure 8, we can observe that AEs and VAEs perform
poorly, whereas PCA performs better than the other DRTs in
most cases. In figure 9, the LDSMs perform similarly in most
cases, except when L = 0.1D.

VI. CONCLUSION AND OUTLOOK

In this paper, we empirically evaluate and compare four
of the most important DRTs for efficiently constructing the
LDSMs. The DRTs discussed in the paper are PCA, KPCA,
AEs and VAEs respectively. The comparison is made on the
basis of the quality assessment of the corresponding LDSMs
on a diverse range of test cases. There are a total of 720 test
cases based on the combinations of ten test functions, four
DRTs, two surrogate modeling techniques and three distinct
values for D and L each. Furthermore, the quality assessment
of the LDSMs is based on two criteria: modeling accuracy and
global optimality. Based on the observations in section V, we
believe following conclusions can be drawn:

1) The LDSMs based on AEs have the highest modeling
accuracy in 132/720 cases. In most of the remaining
cases, the modeling accuracy of the LDSMs is compa-
rable. This demonstrates the efficacy of all four DRTs
and provides evidence to suggest AEs as the most com-
petitive DRT in terms of modeling accuracy. However,
note that future research is necessary to validate this on
more complex cases, e.g., real-world applications and
optimization under uncertainty.

2) In terms of the global optimality, the LDSMs based on
PCA perform better than the others in most cases for
Kriging. This aspect can be verified from figures 6 and 8.
For LDSMs based on Polynomials (with degree=2 and

elastic-net penalty), the performance on this criterion is
comparable in most cases.

Although this study provides a comprehensive analysis on
the performance of the LDSMs based on the four DRTs
discussed in the paper, there are a few limitations to discuss.
Firstly, the study focuses on unconstrained, noiseless, single-
objective optimization problems. Therefore, the results can not
be generalized to more complex cases. Secondly, the study
does not focus on the size of the training sample size which
can be crucial in many cases. It is pertinent to maintain that
we found this to be infeasible for this particular study and left
it for future work. Based on these rationales, we believe that
further work is necessary to validate these findings on more
complex cases, e.g., multiple-objectives, optimization under
uncertainty, constraint handling and real-world applications.

ACKNOWLEDGMENT

This project has received funding from the European
Union’s Horizon 2020 research and innovation programme
under grant agreement number 766186 (ECOLE). Hao Wang
acknowledges the support from the Paris Île-de-France Re-
gion.

REFERENCES

[1] D. Beasley, D. R. Bull, and R. R. Martin, “A sequential niche technique
for multimodal function optimization,” Evolutionary computation, vol. 1,
no. 2, pp. 101–125, 1993.

[2] S. Shan and G. G. Wang, “Survey of modeling and optimization strate-
gies to solve high-dimensional design problems with computationally-
expensive black-box functions,” Structural and multidisciplinary opti-
mization, vol. 41, no. 2, pp. 219–241, 2010.

[3] H.-G. Beyer and B. Sendhoff, “Robust optimization–a comprehensive
survey,” Computer methods in applied mechanics and engineering,
vol. 196, no. 33-34, pp. 3190–3218, 2007.

[4] S. Ullah, H. Wang, S. Menzel, B. Sendhoff, and T. Bäck, “An empirical
comparison of meta-modeling techniques for robust design optimiza-
tion,” in 2019 IEEE Symposium Series on Computational Intelligence
(SSCI), pp. 819–828, IEEE, 2019.

[5] G. Venter, “Review of optimization techniques,” Encyclopedia of
aerospace engineering, 2010.

[6] R. M. Lewis, V. Torczon, and M. W. Trosset, “Direct search methods:
then and now,” Journal of computational and Applied Mathematics,
vol. 124, no. 1-2, pp. 191–207, 2000.

[7] T. Bäck, D. B. Fogel, and Z. Michalewicz, Evolutionary computation 1:
Basic algorithms and operators. CRC press, 2018.

[8] A. Forrester, A. Sobester, and A. Keane, Engineering design via surro-
gate modelling: a practical guide. John Wiley & Sons, 2008.

[9] A. Sóbester, A. I. Forrester, D. J. Toal, E. Tresidder, and S. Tucker,
“Engineering design applications of surrogate-assisted optimization tech-
niques,” Optimization and Engineering, vol. 15, no. 1, pp. 243–265,
2014.

[10] J. Stork, M. Friese, M. Zaefferer, T. Bartz-Beielstein, A. Fischbach,
B. Breiderhoff, B. Naujoks, and T. Tušar, “Open issues in surrogate-
assisted optimization,” in High-Performance Simulation-Based Opti-
mization, pp. 225–244, Springer, 2020.

[11] P. Yang, K. Tang, and X. Yao, “Turning high-dimensional optimization
into computationally expensive optimization,” IEEE Transactions on
Evolutionary Computation, vol. 22, no. 1, pp. 143–156, 2017.

[12] H. Wang, “Forward regression for ultra-high dimensional variable
screening,” Journal of the American Statistical Association, vol. 104,
no. 488, pp. 1512–1524, 2009.

[13] T. Robinson, M. Eldred, K. Willcox, and R. Haimes, “Surrogate-based
optimization using multifidelity models with variable parameterization
and corrected space mapping,” Aiaa Journal, vol. 46, no. 11, pp. 2814–
2822, 2008.

[14] I. T. Jolliffe and J. Cadima, “Principal component analysis: a review and
recent developments,” Philosophical Transactions of the Royal Society
A: Mathematical, Physical and Engineering Sciences, vol. 374, no. 2065,
p. 20150202, 2016.

[15] C. M. Bishop, Pattern recognition and machine learning. springer, 2006.
[16] B. Schölkopf, A. Smola, and K.-R. Müller, “Nonlinear component

analysis as a kernel eigenvalue problem,” Neural computation, vol. 10,
no. 5, pp. 1299–1319, 1998.

[17] M. E. Tipping and C. M. Bishop, “Probabilistic principal component
analysis,” Journal of the Royal Statistical Society: Series B (Statistical
Methodology), vol. 61, no. 3, pp. 611–622, 1999.

[18] S. T. Roweis, “Em algorithms for pca and spca,” in Advances in neural
information processing systems, pp. 626–632, 1998.

[19] M. E. Tipping and C. M. Bishop, “Mixtures of probabilistic principal
component analyzers,” Neural computation, vol. 11, no. 2, pp. 443–482,
1999.

[20] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press,
2016.

[21] G. E. Hinton and R. S. Zemel, “Autoencoders, minimum description
length and helmholtz free energy,” in Advances in neural information
processing systems, pp. 3–10, 1994.

[22] M. Ranzato, C. Poultney, S. Chopra, and Y. L. Cun, “Efficient learning
of sparse representations with an energy-based model,” in Advances in
neural information processing systems, pp. 1137–1144, 2007.

[23] Y. Bengio, L. Yao, G. Alain, and P. Vincent, “Generalized denoising
auto-encoders as generative models,” in Advances in neural information
processing systems, pp. 899–907, 2013.

[24] S. Rifai, P. Vincent, X. Muller, X. Glorot, and Y. Bengio, “Contractive
auto-encoders: Explicit invariance during feature extraction,” 2011.

[25] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” in
2nd International Conference on Learning Representations, ICLR 2014,
Banff, AB, Canada, April 14-16, 2014, Conference Track Proceedings,
2014.

[26] D. J. Rezende, S. Mohamed, and D. Wierstra, “Stochastic backprop-
agation and approximate inference in deep generative models,” in
Proceedings of the 31st International Conference on Machine Learning,
ICML 2014, Beijing, China, 21-26 June 2014, pp. 1278–1286, 2014.

[27] D. P. Kingma, M. Welling, et al., “An introduction to variational
autoencoders,” Foundations and Trends R© in Machine Learning, vol. 12,
no. 4, pp. 307–392, 2019.

[28] J. B. Tenenbaum, V. De Silva, and J. C. Langford, “A global geometric
framework for nonlinear dimensionality reduction,” science, vol. 290,
no. 5500, pp. 2319–2323, 2000.

[29] S. T. Roweis and L. K. Saul, “Nonlinear dimensionality reduction by
locally linear embedding,” science, vol. 290, no. 5500, pp. 2323–2326,
2000.

[30] M. Belkin and P. Niyogi, “Laplacian eigenmaps and spectral techniques
for embedding and clustering,” in Advances in neural information
processing systems, pp. 585–591, 2002.

[31] P. Demartines and J. Hérault, “Curvilinear component analysis: A self-
organizing neural network for nonlinear mapping of data sets,” IEEE
Transactions on neural networks, vol. 8, no. 1, pp. 148–154, 1997.

[32] L. v. d. Maaten and G. Hinton, “Visualizing data using t-sne,” Journal
of machine learning research, vol. 9, no. Nov, pp. 2579–2605, 2008.

[33] T. Rios, B. Sendhoff, S. Menzel, T. Bäck, and B. van Stein, “On the
efficiency of a point cloud autoencoder as a geometric representation for
shape optimization,” in 2019 IEEE Symposium Series on Computational
Intelligence (SSCI), pp. 791–798, IEEE, 2019.

[34] S. Ullah, Z. Xu, H. Wang, S. Menzel, B. Sendhoff, and T. Bäck, “Ex-
ploring clinical time series forecasting with meta-features in variational
recurrent models,” in 2020 IEEE International Joint Conference on
Neural Networks (IJCNN), IEEE, 2020.

[35] C. O. S. Sorzano, J. Vargas, and A. P. Montano, “A survey of dimen-
sionality reduction techniques,” arXiv preprint arXiv:1403.2877, 2014.

[36] L. Van Der Maaten, E. Postma, and J. Van den Herik, “Dimensionality
reduction: a comparative,” J Mach Learn Res, vol. 10, no. 66-71, p. 13,
2009.

[37] W.-L. Loh et al., “On latin hypercube sampling,” The annals of statistics,
vol. 24, no. 5, pp. 2058–2080, 1996.

[38] K. Vanaja and R. Shobha Rani, “Design of experiments: concept
and applications of plackett burman design,” Clinical research and
regulatory affairs, vol. 24, no. 1, pp. 1–23, 2007.

[39] S. C. Ferreira, R. Bruns, H. Ferreira, G. Matos, J. David, G. Brandao,
E. P. da Silva, L. Portugal, P. Dos Reis, A. Souza, et al., “Box-behnken

design: an alternative for the optimization of analytical methods,”
Analytica chimica acta, vol. 597, no. 2, pp. 179–186, 2007.

[40] N. Hansen, A. Auger, O. Mersmann, T. Tusar, and D. Brockhoff,
“COCO: A platform for comparing continuous optimizers in a black-box
setting,” CoRR, vol. abs/1603.08785, 2016.

[41] H. Zou and T. Hastie, “Regularization and variable selection via the
elastic net,” Journal of the royal statistical society: series B (statistical
methodology), vol. 67, no. 2, pp. 301–320, 2005.

[42] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, “Algorithms for
hyper-parameter optimization,” in Proceedings of the 24th International
Conference on Neural Information Processing Systems, NIPS’11, (USA),
pp. 2546–2554, Curran Associates Inc., 2011.

[43] J. Bergstra, D. Yamins, and D. D. Cox, “Making a science of model
search: Hyperparameter optimization in hundreds of dimensions for
vision architectures,” in ICML, 2013.

[44] J. L. Morales and J. Nocedal, “Remark on “algorithm 778: L-bfgs-b:
Fortran subroutines for large-scale bound constrained optimization”,”
ACM Transactions on Mathematical Software (TOMS), vol. 38, no. 1,
pp. 1–4, 2011.

