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Abstract. Although the anomaly detection problem can be considered
as an extreme case of class imbalance problem, very few studies consider
improving class imbalance classification with anomaly detection ideas.
Most data-level approaches in the imbalanced learning domain aim to
introduce more information to the original dataset by generating syn-
thetic samples. However, in this paper, we gain additional information
in another way, by introducing additional attributes. We propose to in-
troduce the outlier score and four types of samples (safe, borderline, rare,
outlier) as additional attributes in order to gain more information on the
data characteristics and improve the classification performance. Accord-
ing to our experimental results, introducing additional attributes can
improve the imbalanced classification performance in most cases (6 out
of 7 datasets). Further study shows that this performance improvement
is mainly contributed by a more accurate classification in the overlapping
region of the two classes (majority and minority classes). The proposed
idea of introducing additional attributes is simple to implement and can
be combined with resampling techniques and other algorithmic-level ap-
proaches in the imbalanced learning domain.
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1 Introduction

The imbalanced classification problem has caught growing attention from many
fields. In the field of computational design optimization, product parameters are
modified to generate digital prototypes and the performances are usually eval-
uated by numerical simulations which often require minutes to hours of com-
putation time. Here, some parameter variations (minority number of designs)
would result in valid and producible geometries but violate given constraints in
the final steps of the optimization. Under this circumstance, performing proper
imbalanced classification algorithms on the design parameters could save com-
putation time. In the imbalanced learning domain, many techniques have proven
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to be efficient in handling imbalanced datasets, including resampling techniques
and algorithmic-level approaches [5, 9, 15], where the former aims to produce
balanced datasets and the latter aims to make classical classification algorithms
appropriate for handling imbalanced datasets. The resampling techniques are
standard techniques in imbalance learning since they are simple and easily con-
figurable and can be used in synergy with other learning algorithms [4]. The
main idea of most oversampling approaches is to introduce more information to
the original dataset by creating synthetic samples. However, very few studies
consider the idea of introducing additional attributes to the imbalanced dataset.

The anomaly detection problem can be considered as an extreme case of the
class imbalance problem. In this paper, we propose to improve the imbalanced
classification with some anomaly detection techniques. We propose to introduce
the outlier score, which is an important indicator to evaluate whether a sample
is an outlier [2], as an additional attribute of the original imbalanced datasets.
Apart from this, we also introduce the four types of samples (safe, borderline,
rare and outlier), which have been emphasized in many studies [14,16], as another
additional attribute. In our experiments, we consider four scenarios, i.e. four dif-
ferent combinations using the additional attributes and performing resampling
techniques. The results of our experiments demonstrate that introducing the two
proposed additional attributes can improve the imbalanced classification perfor-
mance in most cases. Further study shows that this performance improvement
is mainly contributed by a more accurate classification in the overlapping region
of the two classes (majority and minority classes).

The remainder of this paper is organized as follows. In Section 2, the research
related to our work is presented, also including the relevant background knowl-
edge on four resampling approaches, outlier score and the four types of samples.
In Section 3, the experimental setup is introduced in order to understand how
the results are generated. Section 4 gives the results and further discussion of
our experiments. Section 5 concludes the paper and outlines further research.

2 Related Work

As mentioned in the Introduction, we propose to introduce two additional at-
tributes into the imbalanced datasets in order to gain more information on the
data characteristics and improve the classification performance. Introducing ad-
ditional attributes can be regarded as a data preprocessing method, which is
independent of resampling techniques and algorithmic-level approaches, and can
also be combined with these two approaches. In this section, the background
knowledge related to our experiment is given, including resampling techniques
(Section 2.1), the definition of four types of samples in the imbalance learning
domain (Section 2.3) and the outlier score (Section 2.2).

2.1 Resampling techniques

In the following, we introduce two oversampling techniques (SMOTE and ADASYN)
and two undersampling techniques (NCL and OSS).
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Oversampling Techniques The synthetic minority oversampling technique
(SMOTE) is the most famous resampling technique [3]. SMOTE produces syn-
thetic minority samples based on the randomly chosen minority samples and
their K-nearest neighbours. The new synthetic sample can be generated by
interpolation between the selected minority sample and one of its K-nearest
neighbours. The main improvement in the adaptive synthetic (ADASYN) sam-
pling technique is that the samples which are harder to learn are given higher
importance and will be oversampled more often in ADASYN [7].

Undersampling Techniques One-Sided Selection (OSS) is an undersampling
technique which combines Tomek Links and the Condensed Nearest Neighbour
(CNN) Rule [4,11]. In OSS, noisy and borderline majority samples are removed
with so-called Tomek links [17]. The safe majority samples which have limited
contribution for building the decision boundary are then removed with CNN.
Neighbourhood Cleaning Rule (NCL) emphasizes the quality of the retained
majority class samples after data cleaning [12]. The cleaning process is first
performed by removing ambiguous majority samples through Wilson’s Edited
Nearest Neighbour Rule (ENN) [19]. Then, the majority samples which have
different labels from their three nearest neighbours are removed. Apart from
this, if a minority sample has different labels from its three nearest neighbours,
then the three neighbours are removed.

2.2 Four Types of Samples in the Imbalance Learning Domain

Napierala and Stefanowski proposed to analyse the local characteristics of mi-
nority examples by dividing them into four different types: safe, borderline,
rare examples and outliers [14]. The identification of the type of an example
can be done through modeling its k-neighbourhood. Considering that many ap-
plications involve both nominal and continuous attributes, the HVDM metric
(Appendix A) is applied to calculate the distance between different examples.
Given the number of neighbours k (odd), the label to a minority example can be
assigned through the ratio of the number of its minority neighbours to the total
number of neighbours (Rmin

all
) according to Table 1. The label for a majority

example can be assigned in a similar way.

Table 1. Rules to assign the four types of minority examples.

Type Safe (S) Borderline (B) Rare (R) Outlier (O)

Rule k+1
2k

< Rmin
all

6 1 k−1
2k

6 Rmin
all

6 k+1
2k

0 < Rmin
all

< k−1
2k

Rmin
all

= 0

E.G. given the neighbourhood of a fixed size k = 5

Rule 3
5
< Rmin

all
6 1 2

5
6 Rmin

all
6 3

5
0 < Rmin

all
< 2

5
Rmin

all
= 0
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2.3 Outlier Score

Many algorithms have been developed to deal with anomaly detection prob-
lems and the experiments in this paper are mainly performed with the nearest-
neighbour based local outlier score (LOF). Local outlier factor (LOF), which
indicates the degree of a sample being an outlier, was first introduced by Bre-
unig et al. in 2000 [2]. The LOF of an object depends on its relative degree
of isolation from its surrounding neighbours. Several definitions are needed to
calculate the LOF and are summarized in the following Algorithm 1.

Algorithm 1: Local Outlier Factor (LOF) algorithm [2]

Input : X - input data X = (X1, ..., Xn)
n - the number of input examples
k - the number of neighbours

Output: LOF score of every Xi

1 initialization;
2 calculate the distance d(·) between every two data points;
3 for i = 1 to n do
4 calculate k-distance(Xi): the distance between Xi and its kth neighbour;
5 find out k-distance neighbourhood Nk(Xi): the set of data points whose

distance from Xi is not greater than k-distance(Xi);
6 for j = 1 to n do
7 calculate reachability distance:

reach-distk(Xi, Xj) = max{k-distance(Xj), d(Xi, Xj)};

8 calculate local reachability density:

lrdk(Xi) = 1/avg-reach-distk(Xi)

= 1/

(∑
o∈Nk(Xi)

reach-distk(Xi, Xj)

|Nk(Xi)|

)
;

intuitively, the local reachability density of Xi is the inverse of the
average reachability distance based on the k-nearest neighbours of Xi;

9 calculate LOF:

LOFk(Xi) =

∑
o∈Nk(Xi)

lrdk(Xj)

|Nk(Xi)| · lrdk(Xi)

=

∑
o∈Nk(Xi)

lrdk(Xj)

lrdk(Xi)

|Nk(Xi)|

the LOF of Xi is the average local reachability density of Xi’s
k-nearest neighbours divided by the local reachability density of Xi.

10 end

11 end
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According to the definition of LOF, a value of approximately 1 indicates that
the local density of data point Xi is similar to its neighbours. A value below 1
indicates that data point Xi locates in a relatively denser area and does not
seem to be an anomaly, while a value significantly larger than 1 indicates that
data point Xi is alienated from other points, which is most likely an outlier.

3 Experimental Setup

In this paper, we propose to introduce the four types of samples and the outlier
score as additional attributes of the original imbalanced dataset, where the for-
mer can be expressed as Rmin

all
(Table 1) and the latter can be calculated through

Python library PyOD [20].
The experiments reported in this paper are based on 7 two-class imbalanced

datasets, including 6 imbalanced benchmark datasets (given in Table 2) and a 2D
imbalanced chess dataset, which is commonly used for visualising the effective-
ness of the selected techniques in the imbalanced learning domain [4]. Imbalance
ratio (IR) is the ratio of the number of majority class samples to the number of
minority class samples. For each dataset, we consider four scenarios, whether to
perform resampling techniques on the original datasets and whether to perform
resampling techniques on the datasets with additional attributes. For each sce-
nario of each dataset, we repeat the experiments 30 times with different random
seeds. After that, the paired t-tests were performed on each of the 30 perfor-
mance metric values to test if there is significant difference between the results
of each scenario on a 5% significance level. Each collected dataset is divided into
5 stratified folds (for cross-validation) and only the training set is oversampled,
where the stratified fold is to ensure that the imbalance ratio in the training set
is consistent with the original dataset and only oversampling the training set
is to avoid over-optimism problem [15]. Our code will be available on Github
(https://github.com/FayKong/PPSN2020) for the convenience of reproducing
the main results and figure.

Table 2. Information on benchmark datasets [1].

Datasets #Attributes #Samples Imbalance Ratio (IR)

glass1 9 214 1.82

ecoli4 7 336 15.8

vehicle1 18 846 2.9

yeast4 8 1484 28.1

wine quality 11 1599 29.17

page block 10 5472 8.79
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In this paper, we evaluate the performance through several different mea-
sures, including Area Under the ROC Curve (AUC), precision, recall, F-Measure
(F1) and Geometric mean (Gmean) [13]. These performance measures can be
calculated as follows.

AUC =
1 + TPrate − FPrate

2
, TPrate =

TP

TP + FN
, FPrate =

FP

FP + TN
;

GM =

√
TP

TP + FN
× TN

FP + TN
; FM =

(1 + β)2 ×Recall × Precision
β2 ×Recall + Precision

Recall = TPrate =
TP

TP + FN
, Precision =

TP

TP + FP
, β = 1;

where TP, FN,FP, TN indicate True Positives, False Negatives, False Negatives
and True Negatives in the standard confusion matrix for binary classification.

4 Experimental Results and Discussion

Like other studies [7, 13], we also use SVM and Decision Tree as the base clas-
sifiers in our experiments to compare the performance of the proposed method
and the existing methods. Please note that we did not tune the hyperparameters
for the classification algorithms and the resampling techniques [9]. The exper-
imental results with the two additional attributes (four types of samples and
LOF score) are presented in Table 3. We can observe that introducing outlier
score and four types of samples as additional attributes can significantly improve
the imbalanced classification performance in most cases. For 5 out of 7 datasets
(2D chess dataset, glass1, yeast4, wine quality and page block), only introducing
additional attributes (with no resampling) gives better results than performing
resampling techniques.

Table 3. Experimental results with SVM and Decision Tree.
“Add = YES” means we introduce the two additional attributes to the original
datasets; gray cells indicate that the proposed method (Add = YES) significantly
outperforms the existing methods (Add = NO); “—” means that TP+FN=0 or
TP+FP=0 and the performance metric cannot be computed.

2D chess dataset

Methods Add
Decision Tree SVM

AUC Precision Recall F1 Gmean AUC Precision Recall F1 Gmean

NONE
NO 0.8482 0.5743 0.6992 0.6208 0.8047 0.8285 — — — —
YES 0.9771 0.9557 0.9070 0.9226 0.9469 0.9859 0.9846 0.9485 0.9643 0.9723

SMOTE
NO 0.8584 0.6422 0.7102 0.6646 0.8183 0.5921 0.1636 0.5004 0.2437 0.5855
YES 0.9704 0.9191 0.9061 0.9064 0.9453 0.9933 0.9633 0.9667 0.9622 0.9801

ADASYN
NO 0.8482 0.5743 0.6992 0.6208 0.8047 0.6172 0.1434 0.5904 0.2299 0.5892
YES 0.9771 0.9557 0.9070 0.9226 0.9469 0.9925 0.8546 0.9667 0.8999 0.9721

NCL
NO 0.5786 0.1245 0.6652 0.2092 0.5541 0.5290 0.1076 0.4212 0.1693 0.4802
YES 0.9715 0.8542 0.9667 0.8988 0.9716 0.9946 0.9119 0.9667 0.9337 0.9766

OSS
NO 0.7569 0.4197 0.5227 0.4554 0.6813 0.6262 0.3050 0.0295 0.0535 0.0958
YES 0.9743 0.9321 0.9391 0.9316 0.9640 0.9937 0.9532 0.9564 0.9524 0.9745
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glass1 dataset

Methods Add
Decision Tree SVM

AUC Precision Recall F1 Gmean AUC Precision Recall F1 Gmean

NONE
NO 0.7029 0.6099 0.6235 0.6044 0.6806 0.6779 0.6394 0.5533 0.5828 0.6633
YES 0.7328 0.6283 0.6344 0.6227 0.6956 0.7779 0.6506 0.65917 0.6430 0.7089

SMOTE
NO 0.7008 0.5750 0.6561 0.6060 0.6782 0.7140 0.5125 0.7236 0.5785 0.6111
YES 0.7595 0.6393 0.6988 0.6589 0.7273 0.8288 0.6537 0.8802 0.7369 0.7760

ADASYN
NO 0.7095 0.5922 0.6728 0.6187 0.6842 0.7338 0.5159 0.7982 0.6103 0.6271
YES 0.7799 0.6614 0.7106 0.6780 0.7419 0.8388 0.6545 0.8996 0.7456 0.7845

NCL
NO 0.5926 0.4401 0.9302 0.5843 0.3761 0.6750 0.4124 1.0000 0.5765 0.2177
YES 0.5897 0.3976 0.9239 0.5527 0.3806 0.7790 0.4299 1.0000 0.5948 0.3403

OSS
NO 0.7010 0.5688 0.6841 0.6132 0.6804 0.6810 0.5850 0.5837 0.5683 0.6444
YES 0.7611 0.6342 0.7136 0.6637 0.7295 0.7784 0.6085 0.7382 0.6543 0.7128

ecoli4 dataset

Methods Add
Decision Tree SVM

AUC Precision Recall F1 Gmean AUC Precision Recall F1 Gmean

NONE
NO 0.8446 0.7241 0.6433 0.6432 0.7694 0.9919 0.8889 0.8000 0.7993 0.8797
YES 0.8525 0.6435 0.6017 0.5734 0.6920 0.9889 0.9143 0.7500 0.7835 0.8512

SMOTE
NO 0.8824 0.7938 0.7233 0.7102 0.8328 0.9894 0.8290 0.8000 0.7268 0.8457
YES 0.8629 0.8315 0.7300 0.7262 0.8303 0.9931 0.8824 0.9500 0.8881 0.9639

ADASYN
NO 0.8719 0.8407 0.7083 0.7221 0.8236 0.9903 0.7813 0.8000 0.7034 0.8389
YES 0.8747 0.7833 0.6717 0.6623 0.7822 0.9934 0.8800 0.9500 0.8857 0.9634

NCL
NO 0.8007 0.6080 0.6333 0.5651 0.7380 0.9869 0.8258 0.9000 0.7886 0.8976
YES 0.8523 0.7297 0.7550 0.6499 0.7982 0.9914 0.8533 0.9500 0.8556 0.9549

OSS
NO 0.8398 0.6284 0.7250 0.5958 0.7872 0.9877 0.8458 0.8133 0.7580 0.8668
YES 0.9115 0.6858 0.8350 0.6787 0.8586 0.9890 0.8830 0.9117 0.8626 0.9408

vehicle1 dataset

Methods Add
Decision Tree SVM

AUC Precision Recall F1 Gmean AUC Precision Recall F1 Gmean

NONE
NO 0.6699 0.5018 0.4301 0.4575 0.6004 0.8673 0.7074 0.3593 0.4747 0.5824
YES 0.7385 0.5855 0.5329 0.5573 0.6794 0.9081 0.6873 0.6266 0.6536 0.7500

SMOTE
NO 0.7241 0.5398 0.5557 0.5458 0.6796 0.8945 0.5538 0.9237 0.6913 0.8264
YES 0.7403 0.5825 0.5629 0.5704 0.6938 0.9204 0.5808 0.9745 0.7272 0.8582

ADASYN
NO 0.7211 0.5359 0.5570 0.5446 0.6791 0.8995 0.5485 0.9465 0.6937 0.8303
YES 0.7481 0.5842 0.5789 0.5797 0.7025 0.9206 0.5800 0.9809 0.7284 0.8597

NCL
NO 0.7411 0.4153 0.9506 0.5769 0.7093 0.8411 0.4108 0.9768 0.5776 0.7059
YES 0.7781 0.4560 0.9392 0.6118 0.7529 0.8752 0.5076 1.0000 0.6728 0.8139

OSS
NO 0.7125 0.4857 0.6066 0.5370 0.6837 0.8702 0.5745 0.7014 0.6293 0.7560
YES 0.7531 0.5524 0.6286 0.5859 0.7174 0.9062 0.6088 0.9117 0.7290 0.8515

yeast4 dataset

Methods Add
Decision Tree SVM

AUC Precision Recall F1 Gmean AUC Precision Recall F1 Gmean

NONE
NO 0.6736 0.3619 0.2217 0.2653 0.4482 0.8469 — — — —
YES 0.8647 0.8320 0.6708 0.7260 0.8132 0.9910 0.8628 0.8036 0.8270 0.8920

SMOTE
NO 0.7320 0.2632 0.4029 0.3082 0.6082 0.9052 0.2112 0.6769 0.3160 0.7773
YES 0.9115 0.7665 0.6892 0.7171 0.8235 0.9922 0.7096 0.9442 0.8079 0.9639

ADASYN
NO 0.7226 0.2494 0.3958 0.2963 0.6041 0.9011 0.2061 0.6902 0.3104 0.7815
YES 0.9114 0.7531 0.6553 0.6906 0.8036 0.9923 0.6951 0.9618 0.8051 0.9727

NCL
NO 0.8176 0.1929 0.6819 0.2992 0.7772 0.9063 0.2552 0.5745 0.3516 0.7256
YES 0.9785 0.6733 0.9772 0.7928 0.9791 0.9917 0.7512 0.9436 0.8337 0.9649

OSS
NO 0.7066 0.2899 0.3561 0.3020 0.5713 0.8488 0.2094 0.0258 0.0447 0.0781
YES 0.9130 0.7637 0.7699 0.7532 0.8708 0.9892 0.8312 0.8390 0.8310 0.9121

wine quality dataset

Methods Add
Decision Tree SVM

AUC Precision Recall F1 Gmean AUC Precision Recall F1 Gmean

NONE
NO 0.5844 0.1180 0.1275 0.1132 0.2817 0.9790 0.9653 0.9113 0.9333 0.9525
YES 0.9790 0.9653 0.9113 0.9333 0.9525 0.9944 0.9636 0.8274 0.8761 0.9031

SMOTE
NO 0.5597 0.0648 0.1801 0.0930 0.3704 0.6935 0.1065 0.4223 0.1680 0.5941
YES 0.9685 0.9715 0.8630 0.9031 0.9239 0.9942 0.8809 0.9055 0.8890 0.9488

ADASYN
NO 0.5601 0.0654 0.1909 0.0953 0.3800 0.6920 0.1039 0.4231 0.1650 0.5933
YES 0.9859 0.9709 0.8467 0.8917 0.9141 0.9944 0.8805 0.9055 0.8888 0.9488

NCL
NO 0.5922 0.1037 0.2593 0.1423 0.4817 0.7207 0.2582 0.1891 0.1818 0.3755
YES 0.9845 0.8567 0.9492 0.8949 0.9703 0.9939 0.9359 0.8818 0.8890 0.9308

OSS
NO 0.5733 0.0729 0.2158 0.1054 0.4135 0.5078 — — — —
YES 0.9859 0.9636 0.9818 0.9723 0.9901 0.9941 0.9282 0.9424 0.9307 0.9690

page block dataset

Methods Add
Decision Tree SVM

AUC Precision Recall F1 Gmean AUC Precision Recall F1 Gmean

NONE
NO 0.9083 0.8108 0.7442 0.7687 0.8519 0.9723 0.8743 0.7046 0.7663 0.8304
YES 0.9369 0.8535 0.8289 0.8350 0.9014 0.9880 0.8481 0.8460 0.8379 0.9091

SMOTE
NO 0.9122 0.7485 0.7910 0.7620 0.8735 0.9646 0.6815 0.8792 0.7536 0.9099
YES 0.9300 0.8216 0.8404 0.8245 0.9051 0.9847 0.7404 0.9496 0.8251 0.9533

ADASYN
NO 0.9130 0.7302 0.7990 0.7558 0.8763 0.9613 0.5716 0.9277 0.6983 0.9194
YES 0.9328 0.8452 0.8321 0.8356 0.9032 0.9843 0.7529 0.9726 0.8435 0.9661

NCL
NO 0.9338 0.6528 0.9091 0.7502 0.9223 0.9669 0.6628 0.8960 0.7412 0.9127
YES 0.9563 0.7318 0.9400 0.8156 0.9474 0.9844 0.7355 0.9606 0.8255 0.9577

OSS
NO 0.9071 0.7297 0.7936 0.7473 0.8711 0.9555 0.8375 0.6755 0.7310 0.8107
YES 0.9248 0.7820 0.8349 0.7957 0.8972 0.9808 0.7845 0.8655 0.8111 0.9137
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According to our experimental setup, we notice that introducing the outlier
score focuses on dealing with the minority samples since the outlier score indi-
cates the degree of a sample being an outlier. Meanwhile, introducing four types
of samples (safe, borderline, rare and outlier) puts emphasis on separating the
overlapping region and safe region. The visualisation of different scenarios for
the 2D chess dataset is given in Figure 1 in order to further study the reason
for the performance improvement.

From both the experimental results in Table 3 and the visualisation in Figure 1,
we can conclude that, for the 2D chess dataset, the experiment with the two
additional attributes outperforms the experiment with the classical resampling
technique SMOTE. The figure also illustrates that the proposed method has a
better ability to handle samples in the overlapping region.

Fig. 1. [top left]. Original imbalanced 2D chess dataset. [top right]. Classification per-
formance for original chess dataset. The red-circled points indicate the misclassified
points. [bottom left]. Classification performance for SMOTE-sampled chess dataset.
[bottom right]. Classification performance for chess dataset with additional attributes.

Apart from the visualisation, the feature importance (with Decision Tree)
is also analysed in order to get an additional insight into the usefulness of the new
attributes. Detailed importance score of each attribute is shown in Table 4. Ac-
cording to the feature importance analysis, we can conclude that the introduced
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“four types of samples” attribute plays an important role in the decision tree
classification process for all datasets in our experiment. For 3 out of 7 datasets,
the introduced “outlier score” attribute provides useful information during the
classification process. The conclusions above show that the two introduced at-
tributes are actually used in the decision process and the “four types of samples”
attribute is more important than the “outlier score” attribute.

Table 4. Feature importance analysis with Decision Tree.
The higher the “score” is, the more the feature contributes during the classification;
“org” indicates the original attribute while “add” indicates the added attribute; grey
cells indicate the three most useful attributes (after adding the two proposed attributes)
in the decision tree classification process.

2D chess dataset (2 original & 2 added attributes)

Add

Score Attr
org1 org2 add1 add2 — — — — — — — — —

NO 0.4636 0.5364 — — — — — — — — — — —
YES 0.0101 0.0097 0.8152 0.1650 — — — — — — — — —

glass1 dataset (9 original & 2 added attributes)

Add

Score Attr
org1 org2 org3 org4 org5 org6 org7 org8 org9 add1 add2 — —

NO 0.2063 0.0213 0.2354 0.1291 0.0302 0.0418 0.2634 0.0000 0.0726 — — — —
YES 0.1770 0.0056 0.1527 0.1099 0.0000 0.0110 0.1892 0.0000 0.0056 0.2413 0.1077 — —

ecoli4 dataset (7 original & 2 added attributes)

Add

Score Attr
org1 org2 org3 org4 org5 org6 org7 add1 add2 — — — —

NO 0.1093 0.0587 0.0000 0.0000 0.6591 0.1729 0.0000 — — — — — —
YES 0.0000 0.0337 0.0000 0.0000 0.6119 0.0000 0.0808 0.1742 0.0994 — — — —

vehicle1 dataset (18 original & 2 added attributes)

Add

Score Attr
org1 org2 org3 org4 org5 org6 org7 org8 org9 org10 org11 org12 org13

NO 0.1304 0.0654 0.0892 0.0403 0.0563 0.0233 0.0028 0.0707 0.0000 0.0635 0.0172 0.0416 0.0438
YES 0.0248 0.0216 0.1317 0.0426 0.0227 0.0205 0.0179 0.0024 0.0000 0.0338 0.0260 0.1291 0.0828

Add

Score Attr
org14 org15 org16 org17 org18 add1 add2 — — — — — —

NO 0.0862 0.0414 0.0498 0.0516 0.1265 — — — — — — — —
YES 0.0146 0.0310 0.0325 0.0291 0.0471 0.2413 0.0485 — — — — — —

yeast4 dataset (8 original & 2 added attributes)

Add

Score Attr
org1 org2 org3 org4 org5 org6 org7 org8 add1 add2 — — —

NO 0.3301 0.2446 0.1839 0.0720 0.0106 0.0000 0.1233 0.0355 — — — — —
YES 0.0385 0.0297 0.0483 0.0116 0.0000 0.0000 0.0248 0.0053 0.7771 0.0646 — — —

wine quality dataset (11 original & 2 added attributes)

Add

Score Attr
org1 org2 org3 org4 org5 org6 org7 org8 org9 org10 org11 add1 add2

NO 0.0466 0.1402 0.1215 0.1194 0.0806 0.0635 0.0428 0.1287 0.0483 0.0841 0.1244 — —
YES 0.0000 0.0098 0.0000 0.0000 0.0000 0.0000 0.0263 0.0000 0.0000 0.0000 0.0000 0.9639 0.0000

page block dataset (10 original & 2 added attributes)

Add

Score Attr
org1 org2 org3 org4 org5 org6 org7 org8 org9 org10 add1 add2 —

NO 0.5452 0.0096 0.0117 0.1899 0.0530 0.0285 0.0983 0.0382 0.0122 0.0134 — — —
YES 0.5282 0.0006 0.0036 0.1745 0.0205 0.0223 0.0833 0.0129 0.0007 0.0082 0.1288 0.0164 —
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5 Conclusions and Future Research

In this paper, we propose to introduce additional attributes to the original imbal-
anced datasets in order to improve the classification performance. Two additional
attributes, namely four types of samples and outlier score, and the resampling
techniques (SMOTE, ADASYN, NCL and OSS) are considered and experimen-
tally tested on seven imbalanced datasets. According to our experimental results,
two main conclusions can be derived:

1) In most cases, introducing these two additional attributes can improve the
class imbalance classification performance. For some datasets, only introduc-
ing additional attributes gives better classification results than only perform-
ing resampling techniques.

2) An analysis of the experimental results also illustrates that the proposed
method has a better ability to handle samples in the overlapping region.

In this paper, we only validate our idea with four resampling techniques and
seven benchmark datasets. As future work, other anomaly detection techniques,
such as the clustering-based local outlier score (CBLOF) [8] and histogram-
based outlier score (HBOS) [6] could be included in the analysis. Future work
could also consider an extension of this research for engineering datasets [10],
especially for the design optimization problems mentioned in our Introduction.
Detailed analysis of the feature importance and how the proposed method affects
the classification performance in the overlapping region would also be worth
studying.
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Appendix A

Heterogeneous Value Difference Metric (HVDM)

HVDM is a heterogeneous distance function that returns the distance between
two vectors x and y [18], where the vectors can involve both nominal and nu-
merical attributes. The HVDM distance can be calculated by [18]:

HVDM(x,y) =

√√√√ n∑
a=1

da
2(xa, ya), (1)
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where n is the number of attributes. The function da(·) returns the distance
between xa and ya, where xa, ya indicate the ath attribute of vector x and y
respectively. It is defined as follows:

da(x, y) =


1, if x or y is unknown

norm vdma(x, y), if ath attribute is nominal

norm diffa(x, y), if ath attribute is continuous

(2)

where

norm vdma(x, y) =

√√√√ C∑
c=1

∣∣∣∣Na,x,c

Na,x
− Na,y,c

Na,y

∣∣∣∣2, norm diffa(x, y) =
|x− y|

4σa
, (3)

where

– C is the number of total output classes,
– Na,x,c is the number of instances which have value x for the ath attribute

and output class c and Na,x =
∑C

c=1Na,x,c,
– σa is the standard deviation of values of the ath attribute.


